Skip to main content
Log in

Method for Designing Efficient Mixed Radix Multipliers

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The multiplication of two signed inputs, \(A {\times } B\), can be accelerated by using the iterative Booth algorithm. Although high radix multipliers require summing a smaller number of partial products, and consume less power, its performance is restricted by the generation of the required hard multiples of B (\(\pm \phi B\) terms). Mixed radix architectures are presented herein as a method to exploit the use of several radices. In order to implement efficient multipliers, we propose to overlap the computation of the \(\pm \phi B\) terms for higher radices with the addition of the partial products associated to lower radices. Two approaches are presented which have different advantages, namely a combinatory design and a synchronous design. The best solutions for the combinatory mixed radix multiplier for \(64\times 64\) bits require \(8.78\) and \(6.55~\%\) less area and delay in comparison to its counterpart radix-4 multiplier, whereas the synchronous solution for \(64\times 64\) bits is almost \(4{\times }\) smaller in comparison with the combinatory solution, although at the cost of about \(5.3{\times }\) slowdown. Moreover, we propose to extend this technique to further improve the multipliers for residue number systems. Experimental results demonstrate that best proposed modulo \(2^{n}{-}1\) and \(2^{n}{+}1\) multiplier designs for the same width, \(64{\times }64\) bits, provide an Area-Delay-Product similar for the case of the combinatory approach and \(20~\%\) reduction for the synchronous design, when compared to their respective counterpart radix-4 solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Al-Twaijry, M.J. Flynn, Performance/area tradeoffs in Booth multipliers (Technical Report, Stanford, CA, USA, 1995)

  2. J.-C. Bajard, L. Imbert, A full RNS implementation of RSA. IEEE Trans. Compu. 53(6), 769–774 (2004)

    Article  Google Scholar 

  3. J. Bajard, M. Kaihara, T. Plantard, Selected RNS bases for modular multiplication, IEEE Symposium on Computer Arithmetic, pp. 25–32 (2009)

  4. N. Besli, R. Deshmukh, A \(54\times 54\)-bit multiplier with a new Redundant Binary Booth\(^{\prime }\)s encoding. IEEE Can. Conf. Electr. Comput. Eng. 2, 597–602 (2002)

    Google Scholar 

  5. A.D. Booth, A signed binary multiplication technique. Q. J. Mech. Appl. Math. 4, 236–240 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Chaves, L. Sousa, \(\{2^n+1, 2^{n+k}, 2^n-1\}\) : A New RNS Moduli Set Extension, in IEEE Euromicro Symposium on Digital System Design: Architectures (Methods and Tools, IEEE Computer Society, 2004, pp. 210–217

  7. B. Cherkauer, E. Friedman, A hybrid radix-4/radix-8 low power signed multiplier architecture. IEEE Trans. Circuits Syst. II 44(8), 656–659 (1997)

    Article  Google Scholar 

  8. E. Costa, S. Bampi, J. Monteiro, A new architecture for signed radix-\(2^m\) pure array multipliers, IEEE International Conference on Computer Design: VLSI in Computers and Processors, pp. 112–117, (2002).

  9. A. Curiger, VLSI architectures for computations in finite rings and fields, Series in microelectronics (Hartung-Gorre, Konstanz, 1993)

    Google Scholar 

  10. A. Efthymiou, W. Suntiamorntut, J. Garside, L. Brackenbury, An asynchronous, iterative implementation of the original booth multiplication algorithm, International Symposium on Asynchronous Circuits and Systems, pp. 207–215 (2004).

  11. M. Flynn, S. Oberman, Advanced computer arithmetic design (Wiley, New York, 2001)

    Google Scholar 

  12. M. Fonseca, E. Costa, S. Bampi, J. Monteiro, Design of a Radix-\(2^m\) Hybrid Array Multiplier Using Carry Save Adder, Symposium on Integrated Circuits and Systems Design, pp. 172–177 (2005).

  13. W.L. Gallagher, E.E. Swartzlander, High radix booth multipliers using reduced area adder trees. Conference Record of the Twenty-Eighth Asilomar Conference on Signals, Systems and Computers 1, 545–549 (1994)

  14. G. Goto, T. Sato, M. Nakajima, T. Sukemura, A \(54\times 54\)-b regularly structured tree multiplier. IEEE J. Solid-State Circuits 27(9), 1229–1236 (1992)

    Article  Google Scholar 

  15. D. Guevorkian, A. Launiainen, V. Lappalainen, P. Liuha, K. Punkka, A method for designing high-radix multiplier-based processing units for multimedia applications. IEEE Trans. Circuits Syst. Video Technol. 15(5), 716–725 (2005)

    Article  Google Scholar 

  16. F. Liang, J. Liang, Z. Shao, S. Lei, A hybrid multiplier architecture using partially redundant booth algorithm, international workshop on electron devices and semiconductor technology, pp. 202–205 (2007)

  17. Y. Ma, A simplified architecture for module (\(2^{n}+1\)) multiplication. IEEE Trans. Comput. 47(3), 333–337 (1998)

    Article  MathSciNet  Google Scholar 

  18. O. Mac Sorley, High speed arithmetic in binary computers. Proc. IRE 1(49), 67–91 (1961)

    Article  MathSciNet  Google Scholar 

  19. H. Makino, Y. Nakase, H. Suzuki, H. Morinaka, H. Shinohara, K. Mashiko, An 8.8-ns \(54\times 54\)-bit multiplier with high speed redundant binary architecture. IEEE J. Solid-State Circuits 31(6), 773–783 (1996)

    Article  Google Scholar 

  20. J. Mori, M. Nagamatsu, M. Hirano, S. Tanaka, M. Noda, Y. Toyoshima, K. Hashimoto, H. Hayashida, K. Maeguchi, A 10 ns \(54\times 54\)-bit parallel structured full array multiplier with \(0.5\mu \)m CMOS technology, Symposium on VLSI Circuits, Digest of Technical Papers, pp. 125–126, (1990).

  21. R. Muralidharan, C.-H. Chang, Fast hard multiple generators for Radix-8 booth encoded modulo \(2^{n}-1\) and modulo \(2^{n}+1\) multipliers, IEEE International Symposium on Circuits and Systems, pp. 717–720 (2010)

  22. R. Muralidharan, C.-H. Chang, A simple radix-4 booth encoded modulo \(2^{n}+1\) multiplier, IEEE International Symposium on Circuits and Systems, pp. 1163–1166 (2011)

  23. R. Muralidharan, C.-H. Chang, Radix-8 booth encoded modulo multipliers with adaptive delay for high dynamic range residue number system. IEEE Trans. Circuits Syst. I 58(5), 982–993 (2011)

    Article  MathSciNet  Google Scholar 

  24. R. Muralidharan, C.-H. Chang, Area-power efficient modulo \(2^n-1\) and modulo \(2^n+1\) multipliers for \(\{2^n-1, 2^n, 2^n+1\}\) based RNS. IEEE Trans. Circuits Syst. 59–I(10), 2263–2274 (2012)

    Article  MathSciNet  Google Scholar 

  25. R. Muralidharan, C.-H. Chang, Radix-4 and radix-8 booth encoded multi-modulus multipliers. IEEE Trans. Circuits Syst. I 99, 1–13 (2013)

    Google Scholar 

  26. M. Nagamatsu, S. Tanaka, J. Mori, K. Hirano, T. Noguchi, K. Hatanaka, A 15-ns \(32\times 32\)-b CMOS multiplier with an improved parallel structure. IEEE J. Solid-State Circuits 25(2), 494–497 (1990)

    Article  Google Scholar 

  27. L. Pieper, E. Costa, S. Almeida, S. Bampi, J. Monteiro, Efficient dedicated multiplication blocks for 2\(^{\prime }\)s complement Radix-16 and Radix-256 array multipliers, International Conference on Signals, Circuits and Systems, pp. 1–6 (2008)

  28. S. Piestrak, Design of residue generators and multioperand modular adders using carry-save adders. IEEE Trans. Comput. 43(1), 68–77 (1994)

    Article  Google Scholar 

  29. K. Ramamohan Reddy, V. Ramesh, C. Aslam, Design of modulo \(2^{n}-1\) multiplier Based on Radix-8 Booth Algorithm using Residue Number System, Int. J. Eng. Res. Technol. 1 (6), (2012).

  30. G.A. Ruiz, M. Granda, Efficient implementation of \(3\times \) for Radix-8 encoding. Microelectr. J. 39(1), 152–159 (2008)

    Article  Google Scholar 

  31. L. Sousa, R. Chaves, A universal architecture for designing efficient modulo \(2^{n}+1\) multipliers. IEEE Trans. Circuits Syst. I 52(6), 1166–1178 (2005)

    Article  MathSciNet  Google Scholar 

  32. N. Szabo, Residue arithmetic and its applications to computer technology (McGraw-Hill, New York, 1967)

    MATH  Google Scholar 

  33. Virtual Silicon Technology Inc: UMC high density standards cells library \(-\)0.13\(\mu \)m CMOS process v2.3.

  34. Z. Wang, G.A. Jullien, W.C. Miller, An efficient tree architecture for modulo 2n+1 multiplication. VLSI Signal Process. 14(3), 241–248 (1996)

    Article  Google Scholar 

  35. R. Zimmermann, Efficient VLSI implementation of modulo (\(2^{n}\pm 1\)) addition and multiplication, IEEE Symposium on Computer Arithmetic, pp. 158–167 (1999)

Download references

Acknowledgments

This work was supported by national funds through FCT—Fundação para a Ciência e a Tecnologia, under Projects PEst-OE/EEI/LA0021/2013 and EXPL/EEI-ELC/1572/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Pettenghi.

Additional information

F. Pratas performed this work while at INESC-ID.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pettenghi, H., Pratas, F. & Sousa, L. Method for Designing Efficient Mixed Radix Multipliers. Circuits Syst Signal Process 33, 3165–3193 (2014). https://doi.org/10.1007/s00034-014-9799-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9799-0

Keywords

Navigation