Skip to main content
Log in

A Novel Finite-Time Stability Criterion for Linear Discrete-Time Stochastic System with Applications to Consensus of Multi-Agent System

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper is concerned with the finite-time stability of linear discrete-time stochastic system with time-varying delays and its applications to the consensus problem of multi-agent system. A novel finite-time stability criterion is presented to guarantee that the state of the system does not exceed a prescribed bound during a fixed time interval using the piecewise-like delay method. Then, a corollary is derived for the case without stochastic perturbations. Numerical examples are provided to show the less conservatism and effectiveness of the proposed linear matrix inequality conditions. Finally, the stability results are directly applied to develop the finite-time consensus conditions for the linear multi-agent system with time-varying communication delays. An illustrative example is given to validate the effectiveness of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. F. Amato, M. Ariola, C. Cosentino, Finite-time control of discrete-time linear systems: analysis and design conditions. Automatica. 46(5), 919–924 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Amato, M. Ariola, Finite-time control of discrete-time linear system. IEEE Trans. Autom. Control. 50(5), 724–729 (2005)

    Article  MathSciNet  Google Scholar 

  3. G. Chen, F.L. Lewis, L. Xie, Finite-time distributed consensus via binary control protocols. Automatica. 47(9), 1962–1968 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Duan, M. Hu, Y. Yang, L. Guo, A delay-partitioning projection approach to stability analysis of stochastic Markovian jump neural networks with randomly occurred nonlinearities. Neurocomputing. 128, 459–465 (2014)

    Article  Google Scholar 

  5. G. Garcia, S. Tarbouriech, Finite-time stabilization of linear time-varying continuous systems. IEEE Trans. Autom. Control. 54(2), 364–369 (2009)

    Article  MathSciNet  Google Scholar 

  6. A. González, Robust stabilization of linear discrete-time system with time-varying input delay. Automatica. 49, 2919–2922 (2013)

    Article  Google Scholar 

  7. M. Hu, J. Cao, A. Hu, Mean square exponential stability for discrete-time stochastic switched static neural networks with randomly occurring nonlinearities and stochastic delay. Neurocomputing. 129, 476–481 (2014)

    Article  Google Scholar 

  8. M. Hu, Y. Yang, Z. Xu, R. Zhang, L. Guo, Projective synchronization in drive-response dynamical networks. Phys. A. 381, 457–466 (2007)

    Article  Google Scholar 

  9. F. Jiang, L. Wang, Finite-time information consensus for multi-agent systems with fixed and switching topologies. Phys. D. 238(16), 1550–1560 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. X. Li, H. Gao, A new model transformation of discrete-time system with time-varying delay and its application to stability analysis. IEEE Trans. Autom. Control. 56(9), 2172–2178 (2011)

    Article  Google Scholar 

  11. Z. Li, Z. Duan, G. Chen, Consensus of discrete-time linear multi-agent system with observer-type protocols. (2011), arXiv preprint arXiv:1102.5599

  12. S. Li, H. Du, X. Lin, Finite-time consensus algorithm for multi-agent system with double-integrator dynamics. Automatica. 47(8), 1706–1712 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Z. Li, Z. Duan, G. Chen, L. Huang, Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans. Circ. Syst. I. 57(1), 213–224 (2010)

    Article  MathSciNet  Google Scholar 

  14. Y. Liu, Z. Wang, X. Liu, Robust stability of discrete-time stochastic neural networks with time-varying delays. Neurocomputing. 71(4–6), 823–833 (2008)

    Article  Google Scholar 

  15. J. Lu, J. Kurths, J. Cao, N. Mahdavi, Synchronization control for nonlinear stochastic dynamical networks: pinning impulsive strategy. IEEE Trans. Neural Netw. Learn. Syst. 23(2), 285–292 (2012)

    Article  Google Scholar 

  16. J. Lu, D. Ho, J. Kurths, Consensus over directed static networks with arbitrary finite communication delays. Phys. Rev. E 80, 066121 (2009)

    Article  Google Scholar 

  17. W. Ni, D. Chen, Leader-following consensus of multi-agent system under fixed and switching topologies. Syst. Control Lett. 59(3—-4), 209–217 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. W. Ni, X. Wang, C. Xiong, Consensus controllability, observability and robust design for leader-following linear multi-agent system. Automatica. 49(7), 2199–2205 (2013)

    Article  MathSciNet  Google Scholar 

  19. R. Olfati-Saber, R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control. 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  20. V.N. Phat, K. Ratchagit, Stability and stabilization of switched linear discrete-time system with interval time-varying delay. Nonlinear Anal. 5(4), 605–612 (2011)

    MATH  MathSciNet  Google Scholar 

  21. W. Ren, R.W. Beard, E.M. Atkins, A survey of consensus problems in multi-agent coordination. in American Control Conference, Proceedings of the 2005. (2005), pp. 1859–1864

  22. H. Shao, Q.L. Han, New stability criteria for linear discrete-time system with interval-like time-varying delays. IEEE Trans. Autom. Control. 56(3), 619–625 (2011)

    Article  MathSciNet  Google Scholar 

  23. B.S. Sreten, L.J.D. Dragutin, D. Nebojsa, Finite-time stability of discrete-time system with time-varying delay. Chem. Ind. Chem. Eng. Q. 18(4), 525–533 (2012)

    Google Scholar 

  24. Y. Su, J. Huang, Two consensus problems for discrete-time multi-agent system with switching network topology. Automatica. 48(9), 1988–1997 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. F. Sun, J. Chen, Z. Guan, L. Ding, T. Li, Leader-following finite-time consensus for multi-agent systems with jointly-reachable leader. Nonlinear Anal. 13(5), 2271–2284 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Y. Wang, G. Wang, X. Shi, Z. Zuo, Finite-time stability analysis of impulsive switched discrete-time linear systems: the average dwell time approach. Circ. Syst. Signal Process. 31(5), 1877–1886 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Y. Wang, L. Cheng, Z.-G. Hou, M. Tang, C. Zhou, M. Wang, Consensus seeking in a network of discrete-time linear agents with communication noises. Int. J. Syst. Sci. (2013). doi:10.1080/00207721.2013.837544

  28. L. Wang, Z. Chen, Z. Liu, Z. Yuan, Finite time agreement protocol design of multi-agent system with communication delays. Asian J. Control. 11(3), 281–286 (2009)

    Article  MathSciNet  Google Scholar 

  29. L. Wang, F. Xiao, Finite-time consensus problems for networks of dynamic agents. IEEE Trans. Autom. Control. 55(4), 950–955 (2010)

    Article  MathSciNet  Google Scholar 

  30. L. Wang, S. Sun, C. Xia, Finite-time stability of multi-agent system in disturbed environment. Nonlinear Dyn. 67(3), 2009–2016 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. S. Xu, J. Lam, C. Yang, Quadratic stability and stabilization of uncertain linear discrete-time system with state delay. Syst. Control Lett. 43(2), 77–84 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. W. Yu, G. Chen, M. Cao, Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica. 46(6), 1089–1095 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. W. Yu, G. Chen, M. Cao, J. Kurths, Second-order consensus for multiagent system with directed topologies and nonlinear dynamics. IEEE Trans. Syst. Man Cybern. B. 40(3), 881–891 (2010)

    Article  Google Scholar 

  34. W. Yu, G. Chen, M. Cao, Consensus in directed networks of agents with nonlinear dynamics. IEEE Trans. Autom. Control. 56(6), 1436–1441 (2011)

    Article  MathSciNet  Google Scholar 

  35. W. Yu, G. Chen, J. Lv, J. Kurths, Synchronization via pinning control on general complex networks. SIAM J. Control Optim. 51(2), 1395–1416 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. D. Yue, Novel robust stability criteria of discrete-time stochastic recurrent neural networks with time delay. Automatica. 40(2), 331–336 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Y. Zhang, S. Xu, Z. Zeng, Novel robust stability criteria of discrete-time stochastic recurrent neural networks with time delay. Neurocomputing. 72(13–15), 3343–3351 (2009)

    Article  Google Scholar 

  38. L. Zhao, C. Hua, Finite-time consensus tracking of second-order multi-agent systems via nonsingular TSM. Nonlinear Dyn. 75(1–2), 311–318 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  39. L. Zhu, Y. Shen, C. Li, Finite-time control of discrete-time system with time-varying exogenous disturbance. Commun. Nonlinear Sci. Numer. Simul. 14(2), 361–370 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. Z. Zuo, H. Li, Y. Wang, New criterion for finite-time stability of linear discrete-time system with time-varying delay. J. Frankl. Inst. 350(9), 2745–2756 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (JUSRP51317B, JUSRP211A21), and the National Natural Science Foundation of China under Grant 61272530, 11202084 and 11072059, the Natural Science Foundation of Jiangsu Province of China under Grant BK2012741, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grants 20110092110017 and 20130092110017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfeng Hu.

Appendices

Appendices

1.1 Appendix 1: The notations for the conditions in Theorem 1

$$\begin{aligned} \varOmega _1&= \Omega -P,~~~\varOmega =P+\delta _1^2R_1+\delta _2^2R_2+d_m^2R_3,\\ \bar{P}&= R^{-\frac{1}{2}}PR^{-\frac{1}{2}},~~~ \bar{Q}_1=R^{-\frac{1}{2}}Q_1R^{-\frac{1}{2}}, ~~~\bar{Q}_2=R^{-\frac{1}{2}}Q_2R^{-\frac{1}{2}}, \\ \bar{Q}_3&= R^{-\frac{1}{2}}Q_3R^{-\frac{1}{2}},~~~ \bar{Q}_4=R^{-\frac{1}{2}}Q_4R^{-\frac{1}{2}}, \\ \eta ^T(k)&= \Big [x^T(k), x^T(k-d_m), x^T(k-d_0), x^T(k-d(k)),x^T(k-d_M)\Big ],\\ \bar{\Sigma }&= \gamma ^Kc_1\Big [\lambda _2+\gamma ^{d_0-1}d_0\lambda _3+\gamma ^{d_M-1}d_M\lambda _4 +\gamma ^{d_m-1}d_m\lambda _5+\gamma ^{d_M-1}d_M\lambda _6\\&+\,\gamma ^{d_M-2}\frac{d_M(d_M-1)-d_m(d_m-1)}{2}\lambda _6\Big ]-\lambda _1c_2\\&+\,\gamma ^K\delta \Big [\delta _1\gamma ^{d_0-1}\lambda _7\frac{(d_0-d_m)(d_m+d_0+1)}{2}\\&+\,\delta _2\gamma ^{d_M-1}\lambda _8\frac{(d_M-d_0)(d_M+d_0+1)}{2}+d_m\gamma ^{d_m-1}\lambda _9\frac{d_m(d_m+1)}{2}\Big ],\\ \Xi&= \begin{bmatrix}\Xi _{11}&\quad R_3&\quad 0&\quad \Xi _{14}&\quad 0 \\ *&\quad \Xi _{22}&\quad 0&\quad 0&\quad 0\\ *&\quad *&\quad -\gamma ^{d_0}Q_1&\quad 0&\quad 0\\ *&\quad *&\quad *&\quad \Xi _{44}&\quad 0\\ *&\quad *&\quad *&\quad *&\quad -\gamma ^{d_M}Q_2\end{bmatrix},\\ \Xi _{11}&= A^TPA-\gamma P+Q_1+Q_2+Q_3+(d_M-d_m+1)Q_4\\&+\,(A-I)^T\varOmega _1(A-I)+\lambda \rho _1I-R_3,\\ \Xi _{14}&= A^TPB+(A-I)^T\varOmega _1B, \; \Xi _{22}=-\gamma ^{d_m}Q_3-R_3,\\ \Xi _{44}&= B^TPB-\gamma ^{d_m}Q_4+B^T\varOmega _1B+\lambda \rho _2I,\\ \beta _1&= [0,1,0,-1,0], \;\beta _2=[0,0,-1,1,0], \; \beta _3=[0,0,-1,0,1],\\ \beta _4&= [0,0,0,1,-1], \;\beta _5=[0,-1,1,0,0],\\ \Gamma _1&= \delta _1\gamma ^{d_m}(M\beta _1+\beta _1^TM^T+F\beta _2+\beta _2^TF^T)-\gamma ^{d_0}\beta _3^TR_2\beta _3, \\ \Gamma _2&= \delta _2\gamma ^{d_0}(F\beta _2+\beta _2^TF^T+H\beta _4+\beta _4^TH^T)-\gamma ^{d_m}\beta _5^TR_1\beta _5,\\ \Gamma _{11}&= \delta _1\gamma ^{d_m}M, \;\Gamma _{12}=\delta _1\gamma ^{d_m}F,\;\Gamma _{21}=\delta _2\gamma ^{d_0}F,\;\Gamma _{22}=\delta _2\gamma ^{d_0}H,\\ \tilde{R}_1&= \gamma ^{d_m}R_1,\; \tilde{R}_2=\gamma ^{d_0}R_2,\\ M^T&= [0, M_1^T, 0, M_2^T, 0],\;F^T=[0, 0, F_1^T, F_2^T, 0],\;H^T=[0,0, 0, H_1^T, H_2^T]. \end{aligned}$$

1.2 Appendix 2: The bounded estimation of \(V(0)\)

$$\begin{aligned} V(0)&= x^T(0)Px(0)+\sum _{s=-d_0}^{-1}\gamma ^{-1-s}x^T(s)Q_1x(s)\\&+\sum _{s=-d_M}^{-1}\gamma ^{-1-s}x^T(s)Q_2x(s)+\sum _{s=-d_m}^{-1}\gamma ^{-1-s}x^T(s)Q_3x(s) \end{aligned}$$
$$\begin{aligned}&\sum _{s=-d(0)}^{-1}\gamma ^{-1-s}x^T(s)Q_4x(s)+\sum _{s=-d_M+1}^{-d_m}\sum _{v=s}^{-1}\gamma ^{-1-v}x^T(v)Q_4x(v)\\&\qquad +\,\delta _1\sum _{s=-d_0}^{-d_m-1}\sum _{v=s}^{-1}\gamma ^{-1-v}y^T(v)R_1y(v)\\&\qquad +\,\delta _2\sum _{s=-d_M}^{-d_0-1}\sum _{v=s}^{-1}\gamma ^{-1-v}y^T(v)R_2y(v)\\&\qquad +\,d_m\sum _{s=-d_m}^{-1}\sum _{v=s}^{-1}\gamma ^{-1-v}y^T(v)R_3y(v)\\&\quad \le \lambda _{\max }(\bar{P})x^T(0)Rx(0)+\gamma ^{d_0-1}\lambda _{\max }(\bar{Q}_1)\sum _{s=-d_0}^{-1}x^T(s)Rx(s)\\&\qquad +\,\gamma ^{d_M-1}\lambda _{\max }(\bar{Q}_2)\sum _{s=-d_M}^{-1}x^T(s)Rx(s)\\&\qquad +\,\gamma ^{d_m-1}\lambda _{\max }(\bar{Q}_3)\sum _{s=-d_m}^{-1}x^T(s)Rx(s)\\&\qquad +\,\gamma ^{d_M-1}\lambda _{\max }(\bar{Q}_4)\sum _{s=-d_M}^{-1}x^T(s)Rx(s)\\&\qquad +\,\gamma ^{d_M-2}\lambda _{\max }(\bar{Q}_4)\sum _{s=-d_M+1}^{-d_m}\sum _{v=s}^{-1}x^T(v)Rx(v)\\&\qquad +\,\delta _1\gamma ^{d_0-1}\lambda _{\max }(R_1)\sum _{s=-d_0}^{-d_m-1}\sum _{v=s}^{-1}y^T(v)y(v)\\&\qquad +\,\delta _2\gamma ^{d_M-1}\lambda _{\max }(R_2)\sum _{s=-d_M}^{-d_0-1}\sum _{v=s}^{-1}y^T(v)y(v)\\&\qquad +\,d_m\gamma ^{d_m-1}\lambda _{\max }(R_3)\sum _{s=-d_m}^{-1}\sum _{v=s}^{-1}y^T(v)y(v)\\&\quad \le \Sigma \end{aligned}$$

with

$$\begin{aligned} \Sigma&= \left[ \lambda _{\max }(\bar{P})+\gamma ^{d_0-1}d_0\lambda _{\max }(\bar{Q}_1)+\gamma ^{d_M-1}d_M\lambda _{\max }(\bar{Q}_2)\right. \\&+\,\gamma ^{d_m-1}d_m\lambda _{\max }(\bar{Q}_3)+\gamma ^{d_M-1}d_M\lambda _{\max }(\bar{Q}_4)\\&\left. +\,\gamma ^{d_M-2}\frac{d_M(d_M-1)-d_m(d_m-1)}{2}\lambda _{\max }(\bar{Q}_4)\right] c_1\\&+\,\left[ \delta _1\gamma ^{d_0-1}\lambda _{\max }(R_1)\frac{(d_0-d_m)(d_m+d_0+1)}{2}\right. \\&+\,\delta _2\gamma ^{d_M-1}\lambda _{\max }(R_2)\frac{(d_M-d_0)(d_M+d_0+1)}{2}\\&\left. +\,d_m\gamma ^{d_m-1}\lambda _{\max }(R_3)\frac{d_m(d_m+1)}{2}\right] \delta . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Cao, J., Hu, A. et al. A Novel Finite-Time Stability Criterion for Linear Discrete-Time Stochastic System with Applications to Consensus of Multi-Agent System. Circuits Syst Signal Process 34, 41–59 (2015). https://doi.org/10.1007/s00034-014-9838-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9838-x

Keywords

Navigation