Abstract
This paper proposes a chaotic communication approach using indirect coupled synchronization scheme with high power encrypted signals. The proposed scheme is carefully designed so that the encrypted signal does not deteriorate the synchronization unlike in traditional communication methods. The synchronization problem is solved using observer-based controller. The advantages of this approach are the general and systematic feedback observer design methodology suitable for convergence rate of synchronization; flexibility in selection of chaotic signals for cryptosystem secure key generator; and improvement of the frequency-domain characteristics of the transmitted message. Computer simulations show that the synchronization between the transmitter and the receiver is more robust for different amplitude values of the information signal, even in the presence of external disturbances.
Similar content being viewed by others
References
A. Abdullah, Synchronization and secure communication of uncertain chaotic systems based on full-order and reduced-order output-affine observers. App. Math. Comput. 219, 10000–10011 (2013)
G. Alvarez, F. Montoya, M. Romera, G. Pastor, Breaking two secure communication systems based on chaotic masking. IEEE Trans. Circuits Syst. II(51), 505–506 (2004)
N. Barhoumi, F. Msahli, M. Djemaï, K. Busawon, Observer design for some classes of uniformly observable nonlinear hybrid systems. Nonlinear Anal.: Hybrid Syst. 6, 917–929 (2012)
M. Boutayeb, M. Darouach, H. Rafaralahy, Generalized state-space observers for chaotic synchronization and secure communication. IEEE Trans. Circuits Syst. I(49), 345–349 (2002)
K. Busawon, R. Kharel, Z. Ghassemlooy, A new chaos-based communication scheme using observers, in Proceedings of the International Symposium on Communication Systems, Networks and Digital Signal Processing (2008), pp. 16–20.
V.H. Carbajal-Gomez, E. Tlelo-Cuautle, F.V. Fernandez, Optimizing the positive Lyapunov exponent in multi-scroll chaotic oscillators with differential evolution algorithm. App. Math. Comput. 219, 8163–8168 (2013)
J.F. Chang, T.L. Liao, J.J. Yan, H.C. Chen, Implementation of synchronized chaotic Lü systems and its application in secure communication using PSO-based PI controller. Circuits Syst. Signal Process. 29, 527–538 (2010)
K.M. Cuomo, A.V. Oppenheim, S.H. Strogatz, Synchronization of Lorenz based chaotic circuits with applications to communications. IEEE Trans. Circuits Syst. II(40), 626–633 (1993)
H. Dedieu, M.P. Kennedy, M. Hasler, Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE Trans. Circuits Syst. II(40), 634–642 (1993)
U. Feldmann, M. Hasler, W.M. Schwarz, Communication by chaotic signals: the inverse system approach. Int. J. Circuit Theory Appl. 24, 551–579 (1996)
G. Kaddoum, A.J. Lawrance, P. Chargé, D. Roviras, Chaos communication performance: theory and computation. Circ. Syst. Signal Process. 30, 185–208 (2011)
R. Kharel, K. Busawon, Z. Ghassemlooy, Secure communication based on indirect coupled synchronization, in Proceedings of the International Conference on Systems (2012), pp. 184–189.
G. Kolumban, G. Kis, Z. Jako, M.P. Kennedy, FM-DCSK: a robust modulation scheme for chaos communication. IEEE Trans. Fundam. Electron. Commun. Comput. Sci. 81, 1798–1802 (1998)
O.M. Kwon, J.H. Park, S.M. Lee, Secure communication based on chaotic synchronization via interval time-varying delay feedback control. Nonlinear Dyn. 63, 239–252 (2011)
S. Li, G. Alvarez, G. Chen, Breaking a chaos-based secure communication scheme designed by an improved modulation method. Chaos, Solit. Fract. 25, 109–120 (2005)
S. Li, G. Alvarez, G. Chen, X. Mou, Breaking a chaos-noise-based secure communication scheme. Chaos 15, 013703 (2005)
T.L. Liao, N.S. Huang, An observer-based approach for chaotic synchronization with applications to secure communications. IEEE Trans. Circuits Syst. I(46), 1144–1150 (1999)
J. Lü, G. Chen, A new chaotic attractor coined. Int. J. Bifurcation Chaos 12, 659–661 (2002)
O. Morgul, M. Feki, A chaotic masking scheme by using synchronized chaotic systems. Phys. Lett. A 251, 169–176 (1999)
A.T. Parker, K.M. Short, Reconstructing the keystream from a chaotic encryption scheme. IEEE Trans. Circuits Syst. I(48), 624–635 (2001)
L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)
J.Q. Pinkney, P. Camwell, R. Davies, Chaos shift keying communications system using self-synchronizing Chua oscillators. Electronics Lett. 31, 1021–1022 (1995)
J. Proakis, M. Salehi, Digital Communications, 4th edn. (McGraw-Hill, New York, 2012).
N. Reddell, E. Bollt, T. Welch, A dual-synchrony chaotic communication scheme. Circ. Syst. Signal Process. 24, 557–570 (2005)
M.G. Rosemblum, A.S. Pikovsky, J. Kurths, Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76, 1804–1807 (1996)
D. Sadaoui, A. Boukabou, N. Merabtine, M. Benslama, Predictive synchronization of chaotic satellites systems. Expert Syst. Appl. 38, 9041–9045 (2011)
H. Serrano-Guerrero, C. Cruz-Hernández, R.M. López-Gutiérrez, L. Cardoza-Avendaño, R.A. Chávez-Pérez, Chaotic synchronization in nearest-neighbor coupled networks of 3D CNNs. J. Appl. Res. Technol. 11, 26–41 (2013)
A. Sharma, P.R. Sharma, M.D. Shrimali, Amplitude death in nonlinear oscillators with indirect coupling. Phys. Lett. A 376, 1562–1566 (2012)
N. Smaoui, A. Karouma, M. Zribi, Adaptive synchronization of hyperchaotic Chen systems with application to secure communication. Int. J. Innov. Comput. Info. Control 9, 1127–1144 (2013)
P. Stavroulakis, Chaos Applications in Telecommunications (CRC Press, New York, 2006)
J.R. Terry, G.D. Vanwiggeren, Chaotic communication using generalized synchronization. Chaos Solit. Fract. 12, 145–152 (2001)
R. Trejo-Guerra, E. Tlelo-Cuautle, C. Cruz-Hernandez, C. Canchez-Lopez, Chaotic communication system using Chua’s oscillators realized with CCII+s. Int. J. Bifurcation Chaos 19, 4217–4226 (2009)
R. Trejo-Guerra, E. Tlelo-Cuautle, J.M. Jimenez-Fuentes, C. Sánchez-López, J.M. Muñoz-Pacheco, G. Espinosa-Flores-Verdad, J.M. Rocha-Pérez, Integrated circuit generating 3-and 5-scroll attractors. Commun. Nonlinear Sci. Numer. Simul. 17, 4328–4335 (2012)
A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)
C. Wu, L.O. Chua, A simple way to synchronize chaotic systems with applications to secure communication systems. Int. J. Bifurcation Chaos 3, 1619–1627 (1994)
T. Yang, L.O. Chua, Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE Trans. Circuits Syst. I(43), 817–819 (1996)
T. Yang, C.W. Wu, L.O. Chua, Cryptography based on chaotic systems. IEEE Trans. Circuits Syst. I(44), 469–472 (1997)
A.A. Zaher, Digital communication using a novel combination of chaotic shift keying and Duffing oscillators. Int. J. Innov. Comput. Inform. Control 9, 1865–1879 (2013)
Acknowledgments
The authors would like to thank the reviewers for their useful comments and suggestions on our manuscript. This work is partially supported by the Algerian scientific research foundation ANDRU (No. D01720130025).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Senouci, A., Boukabou, A., Busawon, K. et al. Robust Chaotic Communication Based on Indirect Coupling Synchronization. Circuits Syst Signal Process 34, 393–418 (2015). https://doi.org/10.1007/s00034-014-9856-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-014-9856-8