Skip to main content

Robust Chaotic Communication Based on Indirect Coupling Synchronization

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a chaotic communication approach using indirect coupled synchronization scheme with high power encrypted signals. The proposed scheme is carefully designed so that the encrypted signal does not deteriorate the synchronization unlike in traditional communication methods. The synchronization problem is solved using observer-based controller. The advantages of this approach are the general and systematic feedback observer design methodology suitable for convergence rate of synchronization; flexibility in selection of chaotic signals for cryptosystem secure key generator; and improvement of the frequency-domain characteristics of the transmitted message. Computer simulations show that the synchronization between the transmitter and the receiver is more robust for different amplitude values of the information signal, even in the presence of external disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Abdullah, Synchronization and secure communication of uncertain chaotic systems based on full-order and reduced-order output-affine observers. App. Math. Comput. 219, 10000–10011 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. G. Alvarez, F. Montoya, M. Romera, G. Pastor, Breaking two secure communication systems based on chaotic masking. IEEE Trans. Circuits Syst. II(51), 505–506 (2004)

    Article  Google Scholar 

  3. N. Barhoumi, F. Msahli, M. Djemaï, K. Busawon, Observer design for some classes of uniformly observable nonlinear hybrid systems. Nonlinear Anal.: Hybrid Syst. 6, 917–929 (2012)

    MATH  MathSciNet  Google Scholar 

  4. M. Boutayeb, M. Darouach, H. Rafaralahy, Generalized state-space observers for chaotic synchronization and secure communication. IEEE Trans. Circuits Syst. I(49), 345–349 (2002)

    Article  MathSciNet  Google Scholar 

  5. K. Busawon, R. Kharel, Z. Ghassemlooy, A new chaos-based communication scheme using observers, in Proceedings of the International Symposium on Communication Systems, Networks and Digital Signal Processing (2008), pp. 16–20.

  6. V.H. Carbajal-Gomez, E. Tlelo-Cuautle, F.V. Fernandez, Optimizing the positive Lyapunov exponent in multi-scroll chaotic oscillators with differential evolution algorithm. App. Math. Comput. 219, 8163–8168 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. J.F. Chang, T.L. Liao, J.J. Yan, H.C. Chen, Implementation of synchronized chaotic Lü systems and its application in secure communication using PSO-based PI controller. Circuits Syst. Signal Process. 29, 527–538 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. K.M. Cuomo, A.V. Oppenheim, S.H. Strogatz, Synchronization of Lorenz based chaotic circuits with applications to communications. IEEE Trans. Circuits Syst. II(40), 626–633 (1993)

    Article  Google Scholar 

  9. H. Dedieu, M.P. Kennedy, M. Hasler, Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE Trans. Circuits Syst. II(40), 634–642 (1993)

    Article  Google Scholar 

  10. U. Feldmann, M. Hasler, W.M. Schwarz, Communication by chaotic signals: the inverse system approach. Int. J. Circuit Theory Appl. 24, 551–579 (1996)

    Article  MATH  Google Scholar 

  11. G. Kaddoum, A.J. Lawrance, P. Chargé, D. Roviras, Chaos communication performance: theory and computation. Circ. Syst. Signal Process. 30, 185–208 (2011)

    Article  MATH  Google Scholar 

  12. R. Kharel, K. Busawon, Z. Ghassemlooy, Secure communication based on indirect coupled synchronization, in Proceedings of the International Conference on Systems (2012), pp. 184–189.

  13. G. Kolumban, G. Kis, Z. Jako, M.P. Kennedy, FM-DCSK: a robust modulation scheme for chaos communication. IEEE Trans. Fundam. Electron. Commun. Comput. Sci. 81, 1798–1802 (1998)

    Google Scholar 

  14. O.M. Kwon, J.H. Park, S.M. Lee, Secure communication based on chaotic synchronization via interval time-varying delay feedback control. Nonlinear Dyn. 63, 239–252 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Li, G. Alvarez, G. Chen, Breaking a chaos-based secure communication scheme designed by an improved modulation method. Chaos, Solit. Fract. 25, 109–120 (2005)

    Article  MATH  Google Scholar 

  16. S. Li, G. Alvarez, G. Chen, X. Mou, Breaking a chaos-noise-based secure communication scheme. Chaos 15, 013703 (2005)

    Article  Google Scholar 

  17. T.L. Liao, N.S. Huang, An observer-based approach for chaotic synchronization with applications to secure communications. IEEE Trans. Circuits Syst. I(46), 1144–1150 (1999)

    Article  Google Scholar 

  18. J. Lü, G. Chen, A new chaotic attractor coined. Int. J. Bifurcation Chaos 12, 659–661 (2002)

    Article  MATH  Google Scholar 

  19. O. Morgul, M. Feki, A chaotic masking scheme by using synchronized chaotic systems. Phys. Lett. A 251, 169–176 (1999)

    Article  Google Scholar 

  20. A.T. Parker, K.M. Short, Reconstructing the keystream from a chaotic encryption scheme. IEEE Trans. Circuits Syst. I(48), 624–635 (2001)

    Article  MathSciNet  Google Scholar 

  21. L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. J.Q. Pinkney, P. Camwell, R. Davies, Chaos shift keying communications system using self-synchronizing Chua oscillators. Electronics Lett. 31, 1021–1022 (1995)

    Article  Google Scholar 

  23. J. Proakis, M. Salehi, Digital Communications, 4th edn. (McGraw-Hill, New York, 2012).

  24. N. Reddell, E. Bollt, T. Welch, A dual-synchrony chaotic communication scheme. Circ. Syst. Signal Process. 24, 557–570 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. M.G. Rosemblum, A.S. Pikovsky, J. Kurths, Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76, 1804–1807 (1996)

    Article  Google Scholar 

  26. D. Sadaoui, A. Boukabou, N. Merabtine, M. Benslama, Predictive synchronization of chaotic satellites systems. Expert Syst. Appl. 38, 9041–9045 (2011)

    Article  Google Scholar 

  27. H. Serrano-Guerrero, C. Cruz-Hernández, R.M. López-Gutiérrez, L. Cardoza-Avendaño, R.A. Chávez-Pérez, Chaotic synchronization in nearest-neighbor coupled networks of 3D CNNs. J. Appl. Res. Technol. 11, 26–41 (2013)

    Google Scholar 

  28. A. Sharma, P.R. Sharma, M.D. Shrimali, Amplitude death in nonlinear oscillators with indirect coupling. Phys. Lett. A 376, 1562–1566 (2012)

    Article  MATH  Google Scholar 

  29. N. Smaoui, A. Karouma, M. Zribi, Adaptive synchronization of hyperchaotic Chen systems with application to secure communication. Int. J. Innov. Comput. Info. Control 9, 1127–1144 (2013)

    Google Scholar 

  30. P. Stavroulakis, Chaos Applications in Telecommunications (CRC Press, New York, 2006)

    Google Scholar 

  31. J.R. Terry, G.D. Vanwiggeren, Chaotic communication using generalized synchronization. Chaos Solit. Fract. 12, 145–152 (2001)

    Article  Google Scholar 

  32. R. Trejo-Guerra, E. Tlelo-Cuautle, C. Cruz-Hernandez, C. Canchez-Lopez, Chaotic communication system using Chua’s oscillators realized with CCII+s. Int. J. Bifurcation Chaos 19, 4217–4226 (2009)

    Article  Google Scholar 

  33. R. Trejo-Guerra, E. Tlelo-Cuautle, J.M. Jimenez-Fuentes, C. Sánchez-López, J.M. Muñoz-Pacheco, G. Espinosa-Flores-Verdad, J.M. Rocha-Pérez, Integrated circuit generating 3-and 5-scroll attractors. Commun. Nonlinear Sci. Numer. Simul. 17, 4328–4335 (2012)

    Article  MathSciNet  Google Scholar 

  34. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  35. C. Wu, L.O. Chua, A simple way to synchronize chaotic systems with applications to secure communication systems. Int. J. Bifurcation Chaos 3, 1619–1627 (1994)

    Article  Google Scholar 

  36. T. Yang, L.O. Chua, Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE Trans. Circuits Syst. I(43), 817–819 (1996)

    Article  Google Scholar 

  37. T. Yang, C.W. Wu, L.O. Chua, Cryptography based on chaotic systems. IEEE Trans. Circuits Syst. I(44), 469–472 (1997)

    Article  Google Scholar 

  38. A.A. Zaher, Digital communication using a novel combination of chaotic shift keying and Duffing oscillators. Int. J. Innov. Comput. Inform. Control 9, 1865–1879 (2013)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their useful comments and suggestions on our manuscript. This work is partially supported by the Algerian scientific research foundation ANDRU (No. D01720130025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkrim Boukabou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senouci, A., Boukabou, A., Busawon, K. et al. Robust Chaotic Communication Based on Indirect Coupling Synchronization. Circuits Syst Signal Process 34, 393–418 (2015). https://doi.org/10.1007/s00034-014-9856-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9856-8

Keywords