Skip to main content
Log in

Deterministic Construction of Toeplitzed Structurally Chaotic Matrix for Compressed Sensing

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The construction of sensing matrix is a fundamental issue in compressed sensing (CS). This paper introduces a new deterministic construction, referred to as Toeplitzed structurally chaotic matrix (TSCM), which possesses the advantages of both random and structural sensing matrices. We derive the matrix by first multiplying an orthonormal matrix with a chaotic-based Toeplitz matrix, and then subsampling the resultant matrix to obtain the structural one. Theoretically, we show that the entries of the TSCM are asymptotically normally distributed with that of arbitrary sparsifying matrices, yielding low mutual coherence that guarantees faithful recovery. Moreover, the proposed scheme is implementation friendly and hardware efficient, since its entries have almost no randomness and are easy to generate. Extensive numerical results via Matlab suggest that the TSCM outperforms the state-of-the-art matrix schemes and demonstrate its promising potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Amini, V. Montazerhodjat, F. Marvasti, Matrices with small coherence using \(p\)-ary block codes. IEEE Trans. Signal Process. 60(1), 172–181 (2012)

    Article  MathSciNet  Google Scholar 

  2. W.U. Bajwa, J.D. Haupt, G.M. Raz, S.J. Wright, and R.D. Nowak, in Toeplitz-structured compressed sensing matrices. IEEE 14th workshop on Statistical Signal Processing, August 2007, pp. 294–298

  3. R.G. Baraniuk, Lecture notes: compressive sensing. IEEE Signal Process. Mag. 24(4), 118–121 (2007)

    Article  Google Scholar 

  4. T. Cai, L. Wang, G.W. Xu, New bounds for restricted isometry constants. IEEE Trans. Inform. Theory 56(9), 4388–4394 (2010)

    Article  MathSciNet  Google Scholar 

  5. E.J. Candès, J. Romberg, Quantitative robust uncertainty principles and optimally sparse decompositions. Found. Comput. Math. 6(2), 227–254 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. E.J. Candès, J. Romberg, Sparsity and incoherence in compressive sampling. Inverse Probl. 23(3), 969–985 (2007)

    Article  MATH  Google Scholar 

  7. E.J. Candès, T. Tao, Decoding by linear programming. IEEE Trans. Inform. Theory 51(12), 4203–4215 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. E.J. Candès, T. Tao, Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inform. Theory 52(12), 5406–5425 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. E.J. Candès, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  10. E.J. Candès, J. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MATH  Google Scholar 

  11. R. Chartrand, Nonconvex compressed sensing and error correction. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), April 2007, pp. III-889–III-892.

  12. S.-L. Chen, T.T. Hwang, W. Lin, Randomness enhancement using digitalized modified logistic map. IEEE Trans. Circuits Syst. II Express Briefs 57(2), 996–1000 (2010)

    Google Scholar 

  13. R.A. DeVore, Deterministic constructions of compressed sensing matrices. J. Complex. 23, 918–925 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. T.T. Do, L. Gan, N.H. Nguyen, T.D. Tran, Fast and efficient compressive sensing using structurally random matrices. IEEE Trans. Signal Process. 60(1), 139–154 (2012)

    Article  MathSciNet  Google Scholar 

  15. D. Donoho, Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, R. Baraniuk, Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25(2), 83–91 (2008)

    Article  Google Scholar 

  17. J.M. Duarte-Carvajalino, G. Sapiro, Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Trans. Image Process. 18(7), 1305–1408 (2009)

    Article  MathSciNet  Google Scholar 

  18. M.A.T. Figueiredo, R.D. Nowak, S.J. Wright, Gradient projection for sparse reconstruction. IEEE J. Sel. Top. Signal Process. 1(4), 286–597 (2007)

    Article  Google Scholar 

  19. K. Gedalyahu, R. Tur, Y.C. Eldar, Multichannel sampling of pulse streams at the rate of innovation. IEEE Trans. Signal Process. 59(4), 1491–1504 (2011)

    Article  MathSciNet  Google Scholar 

  20. J.F. Gemmeke, H. Van Hamme, B. Cranen, L. Boves, Compressive Sensing for missing data imputation in noise robust speech recognition. IEEE J. Sel. Top. Signal Process. 4(2), 272–287 (2010)

    Article  Google Scholar 

  21. J.F. Gemmeke, T. Virtanen, A. Hurmalainen, Exemplar-based sparse representations for noise robust automatic speech recognition. IEEE Trans. Audio Speech Lang. Process 19(7), 2067–2080 (2011)

    Article  Google Scholar 

  22. J. Haupt, W. Rabbat, R. Nowak, Compressed sensing for network data. IEEE Signal Process. Mag. 25(2), 92–101 (2008)

    Article  Google Scholar 

  23. S. Hong, H. Park, B. Shin, J.-S. No, H. Chung, A new performance measure using \(k\)-set correlation for compressed sensing matrices. IEEE Signal Process. Lett. 19(3), 143–146 (2012)

    Article  Google Scholar 

  24. J.W. Keely, Engineering Statistics Handbook (NIST/SEMATECH, 2003)

  25. S. Li, F. Gao, G. Ge, S. Zhang, Deterministic construction of compressed sensing matrices via algebraic curves. IEEE Trans. Inform. Theory 58(8), 5035–5041 (2012)

    Article  MathSciNet  Google Scholar 

  26. Y. Lin, J. Chen, Y. Kim, D.D. Lee, Blind channel identification for speech dereverberation using \(l_{1}\)-norm sparse learning. Adv. Neural Inform. Process. Syst. 23, 921–928 (2007)

    Google Scholar 

  27. S. Mallat, Z. Zhang, Matching pursuit with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  28. S. Mendelson, A. Pajor, N. Tomczak-Jaegermann, Uniform uncertainty principle for Bernoulli and sub-Gaussian ensembles. Construct. Approx. 28, 269–283 (2008)

    Article  MathSciNet  Google Scholar 

  29. H. Pham, Springer Handbook of Engineering Statistics (Springer, London, 2006)

    Book  MATH  Google Scholar 

  30. C.E. Shannon, Communication theory of secret systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  31. S.L. Shishkin, IEEE J. Emerg. Sel. Top. Circuits Syst. Fast and robust compressive sensing method using mixed hadamard sensing matrix 2(3), 353–361 (2012)

    Google Scholar 

  32. C.D. Sigg, T. Dikk, J.M Buhmann., Speech enhancement with sparse coding in learned dictionaries. IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), March 2010, pp. 4758–4761

  33. J. Tropp, A. Gilbert, Signal recovery from random measurement via orthogonal matching pursuit. IEEE Trans. Inform. Theory 53(12), 4655–4666 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. S.S. Vasanawala, M.T. Alley, B.A. Hargreaves, R.A. Barth, J.M. Pauly, M. Lustig, Improved pediatric MR imaging with compressed sensing. Radiology 256(2), 607–616 (2010)

    Article  Google Scholar 

  35. Q. Xiao, L. Chen, T. Zhu, Y. Wang, Efficient coding of LSP parameters using compressed sensing on the approximate KLT domain. Electr. Rev. 92(7), 230–234 (2011)

    Google Scholar 

  36. T. Xu, W. Wang, A compressed sensing approach for underdetermined blind audio source separation with sparse representation. 15th IEEE Workshop on Statistical Signal Processing, August 2009, pp. 493–496

  37. L. Yu, J.P. Barbot, G. Zheng, H. Sun, Toeplitz-structured chaotic sensing matrix for compressive sensing. 7th IEEE International Symposium on Communication Systems, Networks and Digital Signal Processing, July 2010, pp. 229–233

  38. L. Yu, J.P. Barbot, G. Zheng, H. Sun, Compressive sensing with chaotic sequence. IEEE Signal Process. Lett. 17(8), 731–734 (2010)

    Article  Google Scholar 

  39. L. Zeng, X. Zhang, L. Chen, Z. Fan, Y. Wang, Scrambling-based speech encryption via compressed sensing. EURASIP J. Adv. Signal Process. 2012, 1–12 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation, China (61072042), Natural Science Foundation of Jiangsu Province, China (BK2012510), and Pre-research Foundations of PLA University of Science and Technology (20110211). The authors would like to thank the anonymous reviewers for their constructive comments and questions which greatly improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Zhang, X., Chen, L. et al. Deterministic Construction of Toeplitzed Structurally Chaotic Matrix for Compressed Sensing. Circuits Syst Signal Process 34, 797–813 (2015). https://doi.org/10.1007/s00034-014-9873-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9873-7

Keywords

Navigation