Skip to main content
Log in

A Pseudo-Natural Sampling Algorithm for Low-Cost Low-Distortion Asymmetric Double-Edge PWM Modulators

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a pseudo-natural sampling algorithm for correcting the harmonic distortion produced by asymmetric double-edge uniform-sampling pulse-width modulation is proposed. The algorithm uses the decomposability of the asymmetric double-edge pulse-width modulation process and the Lagrange numerical differentiation method for calculating the pseudo-natural sampling points to obtain a harmonic distortion correction effect. The computational complexity of the algorithm is low because it requires only three shifts, six additions and three multiplications to calculate each of the pseudo-natural sampling points. A complete experimental system based on a single field programmable gate array was built to verify the effectiveness of the proposed algorithm and to compare it with other reported kindred algorithms. The results obtained show that the proposed algorithm has lower hardware requirements and better harmonic distortion correction than other related algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972), pp. 875–924

  2. V. Adrian, J.S. Chang, B.H. Gwee, A low-voltage micropower digital class-D amplifier modulator for hearing aids. IEEE Trans. Circuits Syst. I, Regul. Pap. 56(2), 337–349 (2009)

    Article  MathSciNet  Google Scholar 

  3. M. Berkhout, L. Dooper, Class-D audio amplifiers in mobile applications. IEEE Trans. Circuits Syst. I, Regul. Pap. 57(5), 992–1002 (2010)

    Article  MathSciNet  Google Scholar 

  4. H.S. Black, Modulation Theory (Van Nostrand, New York, 1953), pp. 263–281

  5. F. Chierchie, E.E. Paolini, Real-time digital PWM with zero baseband distortion and low switching frequency. IEEE Trans. Circuits Syst. I, Regul. Pap. 60(10), 2752–2762 (2013)

  6. P. Craven, Toward the 24 bit DAC: novel noise-shaping topologies incorporating correction for the nonlinearity in a PWM output stage. J. Audio Eng. Soc. 41(5), 291–313 (1993)

    MathSciNet  Google Scholar 

  7. N.A. Fraser, B. Nowrouzian, A novel statistical technique for the estimation of DC stability in higher-order \( \Sigma \)-\(\Delta \) A/D converters. Circuits Syst. Signal Process. 23(6), 439–462 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. J.M. Goldberg, M.B. Sandler, Pseudo-natural pulse width modulation for high accuracy digital-to-analogue conversion. Electron. Lett. 27(16), 1491–1492 (1991)

    Article  Google Scholar 

  9. F. Guanziroli, R. Bassoli, C. Crippa, D. Devecchi, G. Nicollini, A 1 W 104 dB SNR filter-less fully-digital open-loop class D audio amplifier with EMI reduction. IEEE J. Solid-State Circuits 47(3), 686–698 (2012)

    Article  Google Scholar 

  10. B.-H. Gwee, J.S. Chang, H. Li, A micropower low-distortion digital pulsewidth modulator for a digital class D amplifier. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 49(4), 245–256 (2002)

    Article  Google Scholar 

  11. B.-H. Gwee, J.S. Chang, V. Adrian, A micropower low-distortion digital class D amplifier based on an algorithmic pulsewidth modulator, IEEE Trans. Circuits Syst. I, Regul. Pap. 52(10), 2007–2022 (2005)

  12. M.J. Hawksford, Dynamic model-based linearization of quantized pulse-width modulation for applications in digital-to-analog conversion and digital power amplifier systems. J. Audio Eng. Soc. 40(4), 235–252 (1992)

    Google Scholar 

  13. S.W. Heo, J. Kim, Double edge trailing PWM based full digital audio amplifier design, in Proceedings of the IEEE International Conference on Consumer Electronics (2012), pp. 251–252

  14. R.E. Hiorns, M.B. Sandler, Power digital to analogue conversion using pulse width modulation and digital signal processing. IEE Proc. G 140(5), 329–338 (1993)

    Google Scholar 

  15. J.-W. Jung, M. J. Hawksford, An oversampled digital PWM linearization technique for digital-to-analog conversion. IEEE Trans. Circuits Syst. I, Regul. Pap. 51(9), 1781–1789 (2004)

  16. K. Kang, J. Roh, Y. Choi, H. Roh, H. Nam, S. Lee, Class-D audio amplifier using 1-bit fourth-order delta-sigma modulation. IEEE Trans. Circuits Syst. II, Express Briefs 55(8), 728–732 (2008)

    Article  Google Scholar 

  17. J.-M. Liu, S.-H. Chien, T.-H. Kuo, A 100 W 5.1-channel digital class-D audio amplifier with single-chip design. IEEE J. Solid-State Circuits 47(6), 1344–1354 (2012)

    Article  Google Scholar 

  18. P.H. Mellor, S.P. Leigh, B.M.G. Cheetham, Improved sampling process for a digital, pulse-width modulated class D power amplifier, in Proceedings of the Colloquium on Digital Audio Signal Processing (1991), pp. 3/1–3/5

  19. K. Nielsen, A review and comparison of pulse width modulation (PWM) methods for analog and digital input switching power amplifiers, in Proceedings of the 102nd AES Convention (1997), preprint 4446

  20. J. Noh, D. Lee, J.-G. Jo, C. Yoo, A class-D amplifier with pulse code modulated (PCM) digital input for digital hearing aid. IEEE J. Solid-State Circuits 48(2), 465–472 (2013)

    Article  Google Scholar 

  21. C. Pascual, Z. Song, P.T. Krein, D.V. Sarwate, P. Midya, W.J. Roeckner, High-fidelity PWM inverter for digital audio amplification: spectral analysis, real-time DSP implementation, and results. IEEE Trans. Power Electron. 18(1), 473–485 (2003)

    Article  Google Scholar 

  22. J. Peng, J. Wang, S. Tan, Optimal FIR filter design based on curve fitting approximation for uncertain 2–1 sigma-delta modulator. Circuits Syst. Signal Process. 33(3), 885–894 (2014)

    Article  Google Scholar 

  23. Z. Song, D.V. Sarwate, The frequency spectrum of pulse width modulated signals. Signal Process. 83(10), 2227–2258 (2003)

    Article  MATH  Google Scholar 

  24. K.P. Sozanski, A digital click modulator for a class-D audio power amplifier, in Proceedings of the Signal Processing: Algorithms, Architectures, Arrangements, and Applications Conference (2009), pp. 121–126

  25. L. Stefanazzi, A.R. Oliva, E.E. Paolini, Alias-free digital click modulator. IEEE Trans. Ind. Informat. 9(2), 1074–1083 (2013)

    Article  Google Scholar 

  26. K. Tsakalis, N. Vlassopoulos, G. Lentaris, D. Reisis, A control-theoretic approach for efficient design of filters in DAC and digital audio amplifiers. Circuits Syst. Signal Process. 30(2), 421–438 (2011)

    Article  MATH  Google Scholar 

  27. M. Wang, X. Jiang, J. Song, T.L. Brooks, A 120 dB dynamic range 400 mW class-D speaker driver with fourth-order PWM modulator. IEEE J. Solid-State Circuits 45(8), 1427–1435 (2010)

    Article  Google Scholar 

  28. S.-H. Yu, J.-S. Hu, Stability and performance of single-bit sigma-delta modulators operated in quasi-sliding mode. Circuits Syst. Signal Process. 25(5), 571–590 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Z. Yu, H. Feng, A method of error correction for digital class D power amplifier, in Proceedings of the Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics (2009), pp. 153–156

Download references

Acknowledgments

This work is supported by the Science and Technology Research and Development Program of Shaanxi Province (Grant No. 2012K06-10) and the Natural Science Foundation of Shaanxi Province (Grant No. 2013JQ8039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeqi Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Fan, Y., Shi, L. et al. A Pseudo-Natural Sampling Algorithm for Low-Cost Low-Distortion Asymmetric Double-Edge PWM Modulators. Circuits Syst Signal Process 34, 831–849 (2015). https://doi.org/10.1007/s00034-014-9877-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9877-3

Keywords

Navigation