Skip to main content
Log in

Built-in Self Test Power and Test Time Analysis in On-chip Networks

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Testing power dissipation of on-chip networks (NoC) is an interesting topic, which is still unexplored specially analytically. In this paper, a transistor level model is proposed to study the testing power and area of testing logic in a mesh NoC using IEEE 1149.1-based approach. For the purpose of verification, HSPICE simulation and FPGA implementation are used. The switching activities are computed using a special purpose cycle-accurate NoC simulator. At the end, the model is used to calculate test power and spot the most energy consuming and area occupying component of a typical NoC testing circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. 1149.1-1990 - IEEE standard test access port and boundary-scan architecture

  2. N. Ahmed, M. Tehranipour, M. Nourani, Extending jtag for testing signal integrity in SOCs, in Proceedings of the Design, Automation and Test (2003), pp. 218–223

  3. A. Banerjee, R. Mullins, S. Moore, A power and energy exploration of network-on-chip architectures, in First International Symposium on Networks-on-Chip (2007), pp. 163–172

  4. N. Banerjee, P. Vellanki, K. Chatha, A power and performance model for network-on-chip architectures, in Proceeding Design, Automation and Test in Europe Conference and Exhibition, vol. 2 (2004), pp. 1250–1255

  5. E. Cota, L. Carro, F. Wagner, M. Lubaszewski, Power-aware NOC reuse on the testing of core-based systems. Proc Int Test Conf 1, 612–621 (2003). doi:10.1109/TEST.2003.1270888

  6. M. Ghadiry, M. Nadi, M.T. Manzuri-Shalmani, D. Rahmati, Effect of number of faults on NOC power and performance, in Proceedings of the 13th International Conference on Parallel and Distributed Systems, ICPADS’07, vol. 1 (2007), pp. 1–9

  7. M. Ghadiry, M. Nadi, D. Rahmati, New approach to calculate energy on NOC, in International Conference on Computer and Communication Engineering, ICCCE 2008 (2008), pp. 1098–1104

  8. C. Grecu, A. Ivanov, R. Saleh, E. Sogomonyan, P. Pande, On-line fault detection and location for noc interconnects, in International On-Line Testing Symposium (2006). doi:10.1109/IOLTS.2006.44

  9. A. Kahng, B. Li, L.S. Peh, K. Samadi, Orion 2.0: a power-area simulator for interconnection networks. IEEE Trans VLSI Syst 20(1), 191–196 (2012)

    Article  Google Scholar 

  10. P. Meloni, I. Loi, F. Angiolini, S. Carta, M. Barbaro, L. Raffo, L. Benini, Area and power modeling for networks-on-chip with layout awareness. VLSI Des (2007)

  11. S. Murali, T. Theocharides, N. Vijaykrishnan, M. Irwin, L. Benini, G. DeMicheli, Analysis of error recovery schemes for networks on chips. Des Test Comput. 22(5), 434–442 (2005). doi:10.1109/MDT.2005.104

  12. M. Nadi, M. Ghadiry, C.Y. Ooi, M.N. Marsono, A semi-analytical approach to study the energy consumption of on-chip networks testing. J. Low Power Electron. 9(2), 189–197 (2013)

    Article  Google Scholar 

  13. P. Pande, A. Ganguly, B. Feero, B. Belzer, C. Grecu, Design of low power reliable networks on chip through joint crosstalk avoidance and forward error correction coding, in IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, DFT ’06 (2006), pp. 466–476. doi:10.1109/DFT.2006.22

  14. C. Patel, S. Chai, S. Yalamanchili, D. Schimmel, Power constrained design of multiprocessor interconnection networks, in Proceedings IEEE International Conference on Computer Design: VLSI in Computers and Processors. ICCD’97 (1997), pp. 408–416

  15. www.ptm.asu.edu/ (2013)

  16. J. Xu, W. Wolf, J. Henkel, S. Chakradhar, A methodology for design, modeling, and analysis of networks-on-chip, in IEEE International Symposium on Circuits and Systems, ISCAS 2005. vol. 2 (2005), pp. 1778–1781. doi:10.1109/ISCAS.2005.1464953

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdiar Ghadiry.

Appendix

Appendix

1.1 Multiplexer Energy (\(E_\mathrm{MUX}\))

Capacitances of a common N to 1 multiplexer can be modelled as follows. According to the sample transmission-gate-based 4 to 1 multiplexer shown in Fig. 11, the total capacitance is divided into four categories being total gate (\(C_\mathrm{gt}\)), junction (\(C_\mathrm{jn}\)), inverters on complement select inputs (\(C_\mathrm{inv}\)), and interconnection wire capacitances(\(C_\mathrm{w}\)). Therefore, the energy model for a generalised \(N\) to 1 multiplexer could be expressed as

$$\begin{aligned} E_\mathrm{MUX}(N)=\frac{1}{2} V_\mathrm{dd}^2 (\alpha _\mathrm{gt} C_\mathrm{gt}+ \alpha _{j} C_{j}+ \alpha _\mathrm{inv} C_\mathrm{inv}+ \alpha _w C_{w})+E_{st_\mathrm{MUX}} \end{aligned}$$
(24)

The total gate capacitance times related switching activity is given as

$$\begin{aligned} \alpha _\mathrm{gt} C_\mathrm{gt}=\sum \limits _{i=1}^{\log _2^N}2^i\times \left( C_\mathrm{g_{n}} +C_\mathrm{g_{p}}{}\right) \alpha _{s_i} \end{aligned}$$
(25)

The total junction capacitance times related switching activity is given as

$$\begin{aligned} \alpha _{j} C_\mathrm{jn}=2\sum \limits _{i=1}^{\log _2^n}2^i\times \left( C_{\mathrm{j_{n}}_i} + C_{\mathrm{j_{p}}_i} \right) \alpha _{{j}_i}, \end{aligned}$$
(26)

where \(C_\mathrm{j_{n}}\) and \(C_\mathrm{j_{p}}\) are junction capacitances of NMOS and PMOS, respectively. The total inverters’ capacitance times related switching activities is given as

$$\begin{aligned} \alpha _\mathrm{inv} C_\mathrm{inv}=\sum \limits _{i=1}^{\log _2^n}2^i\times (C_\mathrm{g_{n}}+C_\mathrm{g_{p}}+ C_\mathrm{j_{n}}+C_\mathrm{j_{p}})\alpha _{s_i} \end{aligned}$$
(27)
Fig. 11
figure 11

Common 4 to 1 multiplexer implemented by transmission gate. Complement of select signals (\(s_0, s_1, ..., s_n\)) connected to nmos FETs are not shown in this figure

1.2 D-Latch and D Flip-Flop Energies (\(E_{D-Latch}\) and \(E_{DFF}\))

Similarly, the total energy of a D-latch module as illustrated in Fig. 12 can be modelled as

$$\begin{aligned} E_\mathrm{{D-latch}}&=\frac{1}{2}V_\mathrm{dd}^2\alpha C_\mathrm{{D-latch}}+E_{\mathrm{st}_\mathrm{{D-latch}}}\end{aligned}$$
(28)
$$\begin{aligned} \alpha C_\mathrm{{D-latch}}&=\alpha _\mathrm{clk} \left( {C_\mathrm{g_{n}}}_1+ {C_\mathrm{g_{p}}}_1+{C_\mathrm{g_{n}}}_2+ {C_\mathrm{g_{p}}}_2\right) +\alpha _{d} \left( {C_\mathrm{j_{n}}}_1+{C_\mathrm{j_{p}}}_1+{C_\mathrm{j_{n}}}_2+{C_\mathrm{j_{p}}}_2\right) \nonumber \\&\quad + \alpha _{d} \left( C_{\mathrm{inv}_1}+ C_{\mathrm{inv}_2}+ C_{\mathrm{inv}_3}\right) , \end{aligned}$$
(29)

where \(\alpha _\mathrm{clk}\) and \(\alpha _{d}\) are the clock and D input switching activities, and \(inv3\) is the inverter to provide \(clkb\) signal. The \(C_\mathrm{inv}\) is defined as

$$\begin{aligned} C_\mathrm{inv}=\left( {C_\mathrm{g_{n}}}+{C_\mathrm{g_{p}}}+{C_\mathrm{j_{n}}}+{C_\mathrm{j_{p}}} \right) \end{aligned}$$
(30)
Fig. 12
figure 12

Common schematic of D-latch implemented by transmission gate

In addition, according to Fig. 13, the energy of a master-slave DFF is expressed as

$$\begin{aligned} E_\mathrm{DFF}=2E_{\mathrm{D-latch}}+E_\mathrm{inv} \end{aligned}$$
(31)
Fig. 13
figure 13

Common schematic of D flip-flop

1.3 NAND Energy

A common CMOS energy is implemented according to Fig. 14 and its energy consumption is given as

$$\begin{aligned} E_\mathrm{NAND}=\frac{1}{2}V_\mathrm{dd}^2\alpha C_\mathrm{NAND}+E_{\mathrm{st}_\mathrm{NAND}}, \end{aligned}$$
(32)

where \(\alpha C_\mathrm{NAND}\) is expressed as

$$\begin{aligned} \alpha C_\mathrm{NAND}&= \alpha _A \left( {C_\mathrm{g_{n}}}+{C_\mathrm{g_{p}}}\right) +\alpha _B \left( {C_\mathrm{g_{n}}}+{C_\mathrm{g_{p}}}\right) \nonumber \\&+\,\alpha _\mathrm{out}\left( 2{C_\mathrm{j_{p}}}+ {C_\mathrm{j_{n}}}\right) \end{aligned}$$
(33)
Fig. 14
figure 14

Schematic of a common CMOS NAND gate

1.4 XOR Energy

A common CMOS energy is implemented according to Fig. 15 and its energy consumption is given as

$$\begin{aligned} E_\mathrm{XOR}=\frac{1}{2}V_\mathrm{dd}^2\alpha C_\mathrm{XOR}+E_{\mathrm{st}_\mathrm{XOR}}, \end{aligned}$$
(34)

where \(\alpha C_\mathrm{XOR}\) is given as

$$\begin{aligned} \alpha C_\mathrm{XOR}=&\alpha _A C_\mathrm{invA} + \alpha _B C_\mathrm{invB}\nonumber \\&+\quad \alpha _A(C_\mathrm{g_{p1}}+C_\mathrm{g_{n2}}+C_\mathrm{g_{p2}}+C_\mathrm{g_{n1}}) \end{aligned}$$
(35)
Fig. 15
figure 15

Schematic of a common XOR gate implemented by transmission gate

1.5 OR Energy

A common CMOS energy is implemented according to Fig. 16 and its energy consumption is given as

$$\begin{aligned} E_\mathrm{OR}=\frac{1}{2}V_\mathrm{dd}^2\alpha C_\mathrm{OR}+E_{\mathrm{st}_\mathrm{OR}}, \end{aligned}$$
(36)

where \(\alpha C_\mathrm{OR}\) is given as

$$\begin{aligned} \alpha C_\mathrm{OR}=&\alpha _A \left( {C_\mathrm{g_{n}}}+{C_\mathrm{g_{p}}}\right) +\alpha _B \left( {C_\mathrm{g_{n}}}+{C_\mathrm{g_{n}}} \right) \nonumber \\&\quad +\quad \alpha _\mathrm{out}\left( C_\mathrm{j_{p}}+ 2{C_\mathrm{j_{n}}}+C_\mathrm{inv}\right) \end{aligned}$$
(37)
Fig. 16
figure 16

Schematic of a common OR gate implemented by conventional CMOS style

1.6 Wire Energy

$$\begin{aligned} E_{W}(\alpha ,L,W,C)=\frac{1}{2} \alpha V_\mathrm{dd}^2 W L C \end{aligned}$$
(38)

where, \(\alpha \), \(W\), \(L\), and \(C\) are the switching activity, width, length, and the sheet capacitance of the wire respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senejani, M.N., Ghadiry, M., Ooi, C.Y. et al. Built-in Self Test Power and Test Time Analysis in On-chip Networks. Circuits Syst Signal Process 34, 1057–1075 (2015). https://doi.org/10.1007/s00034-014-9892-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9892-4

Keywords

Navigation