Skip to main content
Log in

Design of Two-Channel Quadrature Mirror Filter Banks Using Minor Component Analysis Algorithm

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The design of two-channel quadrature mirror filter banks can be constructed based on real infinite impulse response (IIR) all-pass digital filters without yielding magnitude distortion. The design problem is first formulated as a phase optimization using IIR all-pass filters in the least-squares sense. Then the nonlinear phase optimization is further converted into solving an eigenproblem of an appropriate real, symmetric, and positive-definite matrix. In this paper, the minor component analysis algorithm based on the neural learning rule is exploited to the design of eigenfilter. When the learning algorithm achieves convergence, the weights of the neural system approximate the smallest eigenvector, which are the optimal filter coefficients of the IIR all-pass filters. The simulation results confirm that the proposed neural-based method can achieve accurate performance by incorporating the simple neural model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Bhattacharya, A. Antoniou, Real-time design of FIR filters by feedback neural networks. IEEE Signal Process. Lett. 3(5), 158–161 (1996)

    Article  Google Scholar 

  2. D. Bhattacharya, A. Antoniou, Design of equiripple FIR filters using a feedback neural network. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 45(4), 527–531 (1998)

    Article  MATH  Google Scholar 

  3. S.C. Chan, H.H. Chen, C.K.S. Pun, The design of digital all-pass filters using second-order cone programming (SOCP). IEEE Trans. Circuits Syst. II, Express Briefs 52(2), 66–70 (2005)

  4. L.W. Chen, Y.D. Jou, F.K. Chen, S.S. Hao, Eigenfilter design of linear-phase FIR digital filters using neural component analysis. Digit. Signal Process. 34, 146–155 (2014)

    Article  Google Scholar 

  5. K.L. Du, A.K.Y. Lai, K.K.M. Cheng, M.N.S. Swamy, Neural methods for antenna array signal processing: a review. Signal Process. 82(4), 547–561 (2002)

    Article  MATH  Google Scholar 

  6. F.C.A. Fernandes, I.W. Selesnick, R.L.C. Van Spaendonck, C.S. Burrus, Complex wavelet transforms with allpass filters. Signal Process. 83(8), 1689–1706 (2003)

    Article  MATH  Google Scholar 

  7. S. Fiori, Neural minor component analysis approach to robust constrained beamforming. IEE Proc. Vis. Image Signal Process. 150(4), 205–218 (2003)

    Article  Google Scholar 

  8. L. Gazsi, Explicit formula for lattice wave digital filters. IEEE Trans. Circuits Syst. 32(11), 1191–1193 (1985)

    Article  Google Scholar 

  9. C. Herley, M. Vetterli, Wavelet and recursive filter banks. IEEE Trans. Signal Process. 41(8), 2536–2566 (1993)

    Article  MATH  Google Scholar 

  10. Y.D. Jou, Design of real FIR filters with arbitrary magnitude and phase specifications using a neural-based approach. IEEE Trans. Circuits Syst. II, Express. Briefs 53(10), 1068–1072 (2006)

    Article  Google Scholar 

  11. Y.D. Jou, Design of two-channel linear-phase quadrature mirror filter banks based on neural networks. Signal Process. 87(5), 1031–1044 (2007)

    Article  MATH  Google Scholar 

  12. Y.D. Jou, F.K. Chen, L.C. Su, C.M. Sun, Weighted least-squares design of IIR all-pass filters using a Lyapunov error criterion, in: 2010 IEEE Asia-Pacific Conference on Circuits and Systems, (2010) pp. 1071–1074

  13. S.S. Kidambi, Weighted least-squares design of recursive all-pass filters. IEEE Trans. Signal Process. 44(6), 1553–1557 (1996)

    Article  Google Scholar 

  14. J. Kliewer, E. Brka, Near-perfect-reconstruction low-complexity two-channel IIR/FIR QMF banks with FIR phase-compensation filters. Signal Process. 86(1), 171–181 (2006)

    Article  MATH  Google Scholar 

  15. A. Klouche-Djedid, Design of mixed IIR/FIR two-channel QMF bank. Signal Process. 82(3), 507–520 (2002)

    Article  MATH  Google Scholar 

  16. X. Lai, Z. Lin, Minimax phase error design of IIR digital filters with prescribed magnitude and phase responses. IEEE Trans. Signal Process. 60(2), 980–986 (2012)

    Article  MathSciNet  Google Scholar 

  17. S.S. Lawson, Direct approach to design of PCAS filters with combined gain and phase specification. IEE Proc. Vis. Image Signal Process. 141(3), 161–167 (1994)

    Article  Google Scholar 

  18. S.S. Lawson, Design of IIR-based wavelet filter banks and their application to image coding, in Proceedings IEE Seminar on Time-scale and Time-frequency Analysis and Applications, (2000), pp 7/1–7/6

  19. S.S. Lawson, A. Klouche-Djedid, Technique for design of two-channel approximately linear phase QMF filter bank and its application to image compression. IEE Proc. Vis. Image Signal Process. 148(2), 85–92 (2001)

    Article  Google Scholar 

  20. J.H. Lee, I.C. Niu, Minimax design of two-channel IIR QMF banks with arbitrary group delay. IEE Proc. Vis. Image Signal Process. 148(6), 384–390 (2001)

    Article  Google Scholar 

  21. J.H. Lee, Y.L. Shieh, Design of digital allpass-based two-channel quincunx QMF banks. Int. J. Circuit Theory Appl. (2012). doi:10.1002/cta.1807

  22. J.H. Lee, Y.H. Yang, Design of two-channel linear-phase QMF banks based on real IIR all-pass filters. IEE Proc. Vis. Image Signal Process. 150(5), 331–338 (2003)

    Article  Google Scholar 

  23. J.H. Lee, Y.H. Yang, Minimax design of two-channel nonuniform-division filterbanks using IIR allpass filters. IEEE Trans. Signal Process. 52(11), 3227–3240 (2004)

    Article  Google Scholar 

  24. J.H. Lee, Y.H. Yang, Optimal design of complex two-channel IIR QMF banks with equiripple response. IEICE Trans. Fundam. E88(8), 2143–2153 (2005)

    Article  Google Scholar 

  25. J.H. Lee, Y.H. Yang, Two-channel parallelogram QMF banks using 2-D NSHP digital all-pass filters. IEEE Trans. Circuits Syst. I, Regul. Pap. 57(9), 2498–2508 (2010)

    Article  MathSciNet  Google Scholar 

  26. V.M. Mladenov, N.E. Mastorakis, Design of two-dimensional recursive filters by using neural networks. IEEE Trans. Neural Netw. 12(3), 585–590 (2001)

    Article  Google Scholar 

  27. E. Oja, A simplified neuron model as a principal component analyzer. J. Math. Biol. 5, 267–273 (1982)

    Article  MathSciNet  Google Scholar 

  28. E. Oja, Neural networks, principal components and subspace. Int. J. Neural Syst. 1(1), 61–68 (1989)

    Article  MathSciNet  Google Scholar 

  29. E. Oja, Principal components, minor components, and linear neural networks. Neural Netw. 5(6), 927–935 (1992)

    Article  Google Scholar 

  30. P.A. Regalia, S.K. Mitra, P.P. Vaidyanathan, The digital allpass filter: a versatile signal processing building block. Proc. IEEE 76(1), 19–37 (1988)

    Article  Google Scholar 

  31. M.J.T. Smith, S.L. Eddins, Analysis/synthesis techniques for subband image coding. IEEE Trans. Acoust. Speech Signal Process. 38(8), 1446–1456 (1990)

    Article  Google Scholar 

  32. G. Stancic, S. Nikolic, Digital linear phase notch filter design based on IIR all-pass filter application. Digit. Signal Process. 23(3), 1065–1069 (2013)

    Article  MathSciNet  Google Scholar 

  33. L.C. Su, Y.D. Jou, F.K. Chen, An efficient least-squares design of IIR all-pass filter, in Proceedings IEEE TENCON, (2009)

  34. L.C. Su, Y.D. Jou, F.K. Chen, C.M. Sun, Neural network-based IIR all-pass filter design. Circuits Syst. Signal Process. 33(2), 437–457 (2014)

    Article  Google Scholar 

  35. A. Tkacenko, P.P. Vaidyanathan, T.Q. Nguyen, On the eigenfilter design method and its applications: a tutorial. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 50(9), 497–517 (2003)

    Article  Google Scholar 

  36. C.C. Tseng, Design of IIR digital all-pass filters using least \(p\)th phase error criterion. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 50(9), 653–656 (2003)

    Article  Google Scholar 

  37. P.P. Vaidyanathan, Multirate Systems and Filter Bnaks (Prentice-Hall, Englewood Cliffs, 1993)

    Google Scholar 

  38. P.P. Vaidyanathan, T.Q. Nguyen, Eigenfilters: a new approach to least-squares FIR design and applications including Nyquist filters. IEEE Trans. Circuits Syst. 34(1), 11–23 (1987)

    Article  Google Scholar 

  39. P.P. Vaidyanathan, P.A. Regalia, S.K. Mitra, Design of doubly complementary IIR digital filters using single complex all-pass filter with multirate applications. IEEE Trans. Circuits Syst. 34(4), 378–389 (1987)

    Article  Google Scholar 

  40. X.H. Wang, Y.G. He, A neural network approach to FIR filter design using frequency-response masking technique. Signal Process. 88(12), 2917–2926 (2008)

    Article  MATH  Google Scholar 

  41. X. Zhang, H. Iwakura, Design of QMF banks using allpass filters. Electron. Lett. 31(3), 172–174 (1995)

    Article  Google Scholar 

  42. X. Zhang, H. Iwakura, Design of IIR digital all-pass filters based on eigenvalue problem. IEEE Trans. Signal Process. 47(2), 554–559 (1999)

    Article  Google Scholar 

  43. X. Zhang, T. Muguruma, T. Yoshikawa, Design of orthonormal symmetric wavelet filters using real all-pass filters. Signal Process. 80(8), 1551–1559 (2000)

    Article  Google Scholar 

  44. H. Zhao, J. Yu, A novel neural network-based approach for designing 2-D FIR filters. IEEE Trans. Circuits Syst. I, Fundam. Theory and Appl. 44(11), 1095–1099 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the editor and anonymous reviewers for their valuable recommendations and constructive comments, which truly helped toward an effective presentation of the proposed paper. This work was supported in part by the Ministry of Science and Technology of the Republic of China under research contracts NSC 100-2221-E-0145-005 and NSC-101-2221-E-0145-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Dar Jou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LW., Jou, YD. & Hao, SS. Design of Two-Channel Quadrature Mirror Filter Banks Using Minor Component Analysis Algorithm. Circuits Syst Signal Process 34, 1549–1569 (2015). https://doi.org/10.1007/s00034-014-9914-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9914-2

Keywords

Navigation