Skip to main content
Log in

A New Approach for Gate-Level Delay-Insensitive Asynchronous Logic

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

We present a new approach for gate-level delay-insensitive asynchronous logic. The new approach uses only conventional synchronous synthesis and computer-aided design tools, as well as conventional standard cell libraries. This new design approach is highly suitable for very low voltage operation compared with traditional static CMOS design. An auto-sleep mode together with supply voltage control logic reduces leakage power consumption. Several benchmark circuits are implemented using IBM 130nm technology to show that the new asynchronous logic approach is robust even when operating in the sub-threshold regime. The layout for each benchmark is generated using Cadence’s automatic placement and routing tool. Hspice simulations for both asynchronous and synchronous versions of the benchmark circuits enabled comparison of the delay, area and leakage current. Monte Carlo simulations are performed for each benchmark circuit to demonstrate delay insensitivity for very low supply voltages with substantial threshold voltage (\(V_{T}\)) variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. F. Cheng, Y. Chen, S. Huang, C. Yang Huang, Synthesis of QDI FSMs from synchronous specifictions, in: IEEE International Symposium on Asynchronous Circuits and Systems, pp. 61–68, (2014)

  2. K. Chang; B. Gwee, A low-energy low-voltage asynchronous 8051 microcontroller core, in: IEEE International Symposium on Circuits and Systems, vol. 4 pp. 3184, (2006)

  3. S.B. Furber, P. Day, Four-phase micropipeline latch control circuits. IEEE Trans. VLSI Syst. 4(2), 247–253 (1996)

    Article  Google Scholar 

  4. G.N. Hoyer, G. Yee, C. Sechen, Locally clocked pipelines and dynamic logic. IEEE Trans VLSI Syst. 10(1), 58–62 (2001)

    Article  Google Scholar 

  5. A.M. Lines, Pipelined Asynchronous Circuits, M.Sc. Thesis, California Institute of Technology, (1995)

  6. A.M. Lines, S. Fairbanks, GasP: a minimal FIFO control, in: IEEE International Symposium on Asynchronous Circuits and Systems, pp. 46–53, (2001)

  7. J. Liu, S. Nowick, M. Seok, Soft MOUSETRAP: a bundled-data asynchronous pipeline scheme tolerant to random viarations at ultra-low supplys, in: IEEE International Symposium on Asynchronous Circuits and Systems, pp. 1–7, (2013)

  8. S. Liu, Implementation of micropipelines in enable/disable CMOS differential logic. IEEE Trans. VLSI Syst. 3(2), 338–341 (1995)

    Article  Google Scholar 

  9. A.J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R. Southworth, et al., The design of an asynchronous MIPS R3000 microprocessor, in: \(17^{th}\) Conference on Advanced VLSI Research in VLSI, pp. 164–181, (1997)

  10. A.J. Martin, The limitations of delay-insensitivity in asynchronous circuits, in: Sixth MIT Conference on Advanced Research in VLSI, pp. 263–278, (1990)

  11. R. Manohar, A.J. Martin, Quasi-delay-insensitive circuits are turing-complete, CaltechCSTR: cs-tr-95-11, (1995)

  12. R.E. Miller, “Sequential Circuits”, Chapter 10, In Switching Theory, vol. 2 (Wiley, NY, 1965)

  13. S. Martin, K. Flautner, T. Mudge, D. Blaauw, Combined dynamic voltage scaling and adaptive body biasing for lower power microprocessors under dynamic workloads, in: Proceedings IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 721–725, (2002)

  14. R.O. Ozdag, P.A. Beerel, High-speed QDI asynchronous pipelines, in: IEEE Proc. of ASYNC, pp. 13–22, (2002)

  15. L.A. Plana, Contributions to the design of asynchronous macromodular systems, Ph.D. dissertation, (Columbia University, 1998)

  16. J. Rabaey, Low Power Design Essentials (Series on Integrated Circuits and Systems, Springer Science, New York, 2009)

  17. J. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits: A Design Perspective, 2nd edn. (Pearson Education, NJ, 2003)

    Google Scholar 

  18. I.E. Sutherland, Micropipelines. Commun. ACM 32(6), 720–738 (1989)

    Article  Google Scholar 

  19. J. Sparso, S. Furber, Principles of Asynchronous Circuit Design: A System Perspective (Kluwer Academic Publishers, Boston, 2001)

    Book  Google Scholar 

  20. M. Singh, The Design of High-throughput Asynchronous Pipelines, Ph.D. dissertation, (Columbia University, Columbia, 2002)

  21. M. Singh, S.M. Nowick, High-throughput asynchronous pipelines for fine-grain dynamic datapaths, in: IEEE International Symposium on Asynchronous Circuits and Systems, pp. 198–209 (2000)

  22. M. Singh, S.M. Nowick, The design of high-performance dynamic asynchronous pipelines: lookahead style. IEEE Trans. VLSI Syst. 15(11), 1256–1269 (2007)

    Article  Google Scholar 

  23. M. Singh, S. Nowick, MOUSETRAP: high-speed transition-signaling asynchronous pipelines. IEEE Trans. VLSI Syst. 15(6), 684–698 (2007)

    Article  Google Scholar 

  24. M. Singh, S. Nowick, The design of high-performance dynamic asynchronous pipelines: high-capacity style. IEEE Trans. VLSI Syst. 15(11), 1270–1283 (2007)

    Article  Google Scholar 

  25. S. Schuster, W. Reohr, P. Cook, D. Heidel, M. Immediato, K. Jenkins, Asynchronous interlocked pipelined CMOS circuits operating at 3.3-4.5 GHz, in: IEEE ISSCC Digest of Technical Papers, pp. 292–293 (2000)

  26. C.S. Wallace, A suggestion for a fast multiplier. IEEE Trans. Electron. Comput. EC-13, 114–117 (1964)

  27. T.E. Williams, Self-timed rings and their application to division, Ph.D. dissertation, Stanford University (1991)

  28. T.E. Williams, M.A. Horowitz, A zero-overhead self-timed 160ns 54b CMOS divider, ISSCC Digest of Technical Papers, pp. 98–296 (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., He, X. & Sechen, C. A New Approach for Gate-Level Delay-Insensitive Asynchronous Logic. Circuits Syst Signal Process 34, 1431–1459 (2015). https://doi.org/10.1007/s00034-014-9917-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9917-z

Keywords

Navigation