Skip to main content
Log in

Robust Finite-Time Output Feedback \( H_\infty \) Control for Stochastic Jump Systems with Incomplete Transition Rates

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This article aims to investigate the problem of robust finite-time output feedback \( H_\infty \) control for stochastic jump systems with incomplete transition rates. Firstly, for the nominal stochastic jump systems, the sufficient conditions for the finite-time boundedness and finite-time output feedback stabilization are developed, respectively. Then, a robust finite-time \( H_\infty \) output feedback controller is designed by means of linear matrix inequalities. A key point of this work is to relax the special requirement of completely known transition rates to more general form that mixes two cases of completely known and completely unknown transition rates. Finally, a numerical example is given to demonstrate the applicability of the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Amato, M. Ariola, P. Dorato, Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica 37(9), 1459–1463 (2001)

    Article  MATH  Google Scholar 

  2. M. Athans, Command and control theory: a challenge to control science. IEEE Trans. Autom. Control 32(4), 286–293 (1987)

    Article  Google Scholar 

  3. E.K. Boukas, Static output feedback control for stochastic hybrid systems: LMI approach. Automatica 42(1), 183–188 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. W.H. Chen, J.X. Xu, Z.H. Guan, Guaranteed cost control for uncertain Markovian jump systems with mode-dependent time-delays. IEEE Trans. Autom. Control 48(12), 2270–2277 (2003)

    Article  MathSciNet  Google Scholar 

  5. M. Darouach, M. Chadli, Admissibility and control of switched discrete-time singular systems. Syst. Sci. Control Eng. 1(1), 43–51 (2013)

    Article  Google Scholar 

  6. H.L. Dong, Z.D. Wang, W.C.H. Daniel, H.J. Gao, Robust \(H_\infty \) filtering for Markovian jump systems with randomly occurring nonlinearities and sensor saturation: the finite-horizon case. IEEE Trans. Signal Process. 59(7), 3048–3057 (2011)

    Article  MathSciNet  Google Scholar 

  7. H.L. Dong, Z.D. Wang, H.J. Gao, Distributed \(H_\infty \) filtering for a class of Markovian jump nonlinear time-delay systems over lossy sensor networks. IEEE Trans. Ind. Electron. 60(10), 4665–4672 (2013)

    Article  Google Scholar 

  8. P. Dorato, Short time stability in linear time-varying systems, in Proceedings of the IRE International Convention, Record Part 4, pp. 83–87. New York, USA (1961).

  9. Z.Y. Fei, H.J. Gao, P. Shi, New results on stabilization of Markovian jump systems with time delay. Automatica 45(10), 2300–2306 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. H.J. Gao, X.Y. Meng, T.W. Chen, L. James, Stabilization of networked control systems via dynamic output-feedback controllers. SIAM J. Control Optim. 48(5), 3643–3658 (2010)

    Article  MATH  Google Scholar 

  11. L.L. Hou, G.D. Zong, W.X. Zheng, Y.Q. Wu, Exponential \(l_2-l_\infty \) control for discrete-time switching Markov jump linear systems. Circuits Syst. Signal Process. 32(2), 2745–2759 (2013)

    Article  MathSciNet  Google Scholar 

  12. Z.W. Lin, J.Z. Liu, W.H. Zhang, Y.G. Niu, Stabilization of interconnected nonlinear stochastic Markovian jump systems via dissipativity approach. Automatica 47(12), 2796–2800 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. F. Liu, Y. Cai, Passive analysis and synthesis of Markovian jump systems with norm bounded uncertainty and unknown delay. Dyn. Contin. Discret. Ser. A 13A(1), 157–166 (2006)

    MathSciNet  Google Scholar 

  14. M. Liu, D.W.C. Ho, Y.G. Niu, Stabilization of Markovian jump linear system over networks with random communication delay. Automatica 45(2), 416–421 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. R.Q. Lu, B. Lou, A.K. Xue, Mode-dependent quantised \(H_\infty \) filtering for Markovian jump singular system. Int. J. Syst. Sci. (2013). doi:10.1080/00207721.2013.837539

  16. X.L. Luan, F. Liu, P. Shi, Robust finite-time control for a class of extended stochastic switching systems. Int. J. Syst. Sci. 42(7), 1197–1205 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. X.R. Mao, Stability of stochastic differential equations with Markovian switching. Stoch. Process. Appl. 79(1), 45–67 (1999)

    Article  MATH  Google Scholar 

  18. L.J. Shen, U. Buscher, Solving the serial batching problem in job shop manufacturing systems. Eur. J. Oper. Res. 221(1), 14–26 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. X.M. Sun, G.P. Liu, D. Reeds, W. Wang, Controller failure analysis for systems with time-varying delay. IEEE Trans. Autom. Control 53(10), 2391–2396 (2008)

    Article  Google Scholar 

  20. Z.D. Wang, H. Qiao, K.J. Burnham, On stabilization of bilinear uncertain time-delay stochasticsystems with Markovian jumping parameters. IEEE Trans. Autom. Control 47(4), 640–646 (2002)

    Article  MathSciNet  Google Scholar 

  21. Y.Y. Wang, L.H. Xie, C.E. Souza, Robust control of a class of uncertain nonlinear systems. Syst. Control Lett. 19(2), 139–149 (1992)

    Article  Google Scholar 

  22. L. Weiss, E.F. Infante, Finite-time stability under perturbing forces and on product spaces. IEEE Trans. Autom. Control 12(1), 54–59 (1967)

    Article  MathSciNet  Google Scholar 

  23. H.N. Wu, K.Y. Cai, Mode-independent robust stabilization for uncertain Markovian jump nonlinear systems via fuzzy control. Syst. Man Cybern. Part B Cybern. 36(3), 509–519 (2006)

    MathSciNet  Google Scholar 

  24. Z.J. Wu, Y.H. Liu, Robust output-feedback control for stochastic nonlinear systems with modeling errors. J. Control Theory Appl. 10(3), 344–348 (2012)

    Article  MathSciNet  Google Scholar 

  25. Z.G. Wu, P. Shi, H.Y. Su, J. Chu, Passivity analysis for discrete-time stochastic Markovian jump neural networks with mixed time-delays. IEEE Trans. Neural Netw. 22(10), 1566–1575 (2011)

    Article  Google Scholar 

  26. Z.G. Wu, P. Shi, H.Y. Su, J. Chu, Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled-data. IEEE Trans. Cybern. 43(6), 1796–1806 (2013)

    Article  Google Scholar 

  27. Z.G. Wu, P. Shi, H.Y. Su, J. Chu, Asynchronous \(l_2-l_\infty \) filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities. Automatica 50(1), 180–186 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Wu, W. Wang, H. Ye, Z.D. Wang, State estimation for Markovian jump linear systems with bounded disturbances. Automatica 49(11), 3292–3303 (2013)

    Article  MathSciNet  Google Scholar 

  29. L.G. Wu, X.M. Yao, W.X. Zheng, Generalized fault detection for two-dimensional Markovian jump systems. Automatica 48(8), 1741–1750 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. L.X. Zhang, E.K. Boukas, Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities. Automatica 45(2), 463–468 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Y. Zhang, Y. He, M. Wu, J. Zhang, Stabilization for Markovian jump systems with partial information on transition probability based on free-weighting matrices. Automatica 47(1), 79–84 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Y.S. Zhang, S.Y. Xu, J.H. Zhang, Delay-dependent robust \(H_\infty \) control for uncertain fuzzy Markovian jump systems. Int. J. Control Autom. 7(4), 520–529 (2009)

    Article  Google Scholar 

  33. G.D. Zong, D. Yang, L.L. Hou, Q.Z. Wang, Robust finite-time \(H_\infty \) control for Markovian jump systems with partially known transition probabilities. J. Frankl. Inst. 350(6), 1562–1578 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants 61233002 and 61174073and IAPI Fundamental Research Funds under Grant 2013ZCX03-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhao.

Appendix

Appendix

1.1 Proof of Lemma 2

Proof

For the stochastic jump system (1) (\(u(t)=0, v(t)=0\), and \(F(t, r_t)=0\)), choose a Lyapunov function candidate as (30). Then, by Definition 4, we obtain

$$\begin{aligned} \mathcal {L}{V(x(t),i)}&= x^T(t)\bigg [A_i^TP_i+P_iA_i+\sum _{j=1}^N{\pi _{ij}}P_j\bigg ]x(t) \nonumber \\&+\,x^T(t)G_i^TP_iG_ix(t). \end{aligned}$$
(61)

If the transition rates are not accessible completely, the following equation hold for arbitrary symmetric matrices \(Q_i\) due to \(\sum _{j=1}^N{\pi _{ij}}Q_i=0\)

$$\begin{aligned} \mathcal {L}{V(x(t),i)}&= x^T(t)\bigg [A_i^TP_i+P_iA_i+{\sum _{j=1}^N}{\pi _{ij}}P_j-\sum _{j=1}^N{\pi _{ij}}Q_i\bigg ]x(t)\nonumber \\&+\,x^T(t)G_i^TP_iG_ix(t) \nonumber \\&= x^T(t)\bigg [A_i^TP_i+P_iA_i+\sum _{j\in L_k^i}{\pi _{ij}}(P_j-Q_i)+\sum _{j\in L_{uk}^i}{\pi _{ij}}(P_j-Q_i)\nonumber \\&+\,G_i^TP_iG_i\bigg ]x(t). \end{aligned}$$
(62)

If \(i\in L_k^i\)(the elements of the diagonal are known), by inequalities (14) and (15), the following inequality holds

$$\begin{aligned} \displaystyle {} \mathcal {L}{V(x(t),i)}\le \alpha V(x(t),i). \end{aligned}$$
(63)

If \(i\in L_{uk}^i\)(the elements of the diagonal are unknown), according to inequalities (1416), the inequality (63) holds. Multiplying (63) by \(e^{-\alpha t}\) yields

$$\begin{aligned} \mathcal {L}({e^{-\alpha t}}{V(x(t),i)})\le 0. \end{aligned}$$
(64)

According to Dynkin’s formula for (64), we get

$$\begin{aligned} \displaystyle {}{e^{-\alpha t}}{V(x(t),i)}-{V(x_0,t_0)}\le 0, \end{aligned}$$
(65)

which shows

$$\begin{aligned} V(x(t),i)\le e^{\alpha t}V(x_0,t_0). \end{aligned}$$
(66)

This together with \(\tilde{P}_i={H_i^{-1/2}}P_i{H_i^{-1/2}}\) gives rise to

$$\begin{aligned} \begin{array}{ll} V(x(t),i)\le e^{\alpha t} {c_1} \lambda _{\max }(\tilde{P}_i). \end{array} \end{aligned}$$
(67)

Consider

$$\begin{aligned} V(x(t),i)=x^T(t){P_i}x(t) \ge \lambda _{\min }(\tilde{P}_i) x^T(t){H_i}x(t). \end{aligned}$$
(68)

For \(\forall t\in [0, T]\), we obtain

$$\begin{aligned} \mathbb {E}\{x^T(t){H_i}x(t)\}\le {c_1}e^{\alpha t}\frac{{\lambda _{\max }(\tilde{P}_i) }}{\lambda _{\min }(\tilde{P}_i)}<c_2. \end{aligned}$$
(69)

This completes the proof. \(\square \)

1.2 Proof of Lemma 3

Proof

For the stochastic jump system (1) (\(u = 0\) and \(F(t, r_t)=0\)), choose a Lyapunov function candidate as (30). Based on Definition 4, we have

$$\begin{aligned} \mathcal {L}{V(x(t),i)}&= x^T(t)\big [A_i^TP_i+P_iA_i+\sum _{j=1}^N{\pi _{ij}}P_j+G_i^TP_iG_i\big ]x(t)\nonumber \\&+\,v^T(t)E_{xi}^TP_ix(t)+x^T(t)P_i E_{xi}v(t). \end{aligned}$$
(70)

Since \(\sum _{j=1}^N{\pi _{ij}}Q_i=0\) is always true for arbitrary symmetric matrices \(Q_i\), (70) can be rewritten as

$$\begin{aligned} \mathcal {L}{V(x(t),i)}&= x^T(t)\left[ A_i^TP_i+P_iA_i+{\sum _{j=1}^N}{\pi _{ij}}P_j-\sum _{j=1}^N{\pi _{ij}}Q_i+G_i^TP_iG_i\right] x(t)\nonumber \\&+\,v^T(t)E_{xi}^TP_ix(t) \nonumber \\&+\,x^T(t)P_i E_{xi}v(t)\nonumber \\&= x^T(t)\Big [A_i^TP_i+P_iA_i+\sum _{j\in L_k^i}{\pi _{ij}}(P_j-Q_i)+\sum _{j\in L_{uk}^i}{\pi _{ij}}(P_j-Q_i)\nonumber \\&+\,G_i^TP_iG_i\Big ]x(t) \nonumber \\&+\,v^T(t)E_{xi}^TP_ix(t)+x^T(t)P_i E_{xi}v(t). \end{aligned}$$
(71)

Notice that \(\pi _{ij}\ge 0\) for all \(i\ne j\), and \(\pi _{ii}=-\displaystyle {}{\sum _{j=1,i\ne j}^{N}}{\pi _{ij}}<0\) for all \(i\in \mathcal {M}\), if \(i\in L_k^i\) (the elements of the diagonal are known), by inequalities (18) and (19), the following inequality holds

$$\begin{aligned} \displaystyle {} \mathcal {L}{V(x(t),i)}\le \alpha V(x(t),i)+ \gamma ^2 v^T(t)v(t). \end{aligned}$$
(72)

If \(i\in L_{uk}^i\)(the elements of the diagonal are unknown), according to inequalities (1820), the inequality (72) holds. Multiplying (72) by \(e^{-\alpha t}\) yields

$$\begin{aligned} \mathcal {L}({e^{-\alpha t}}{V(x(t),i)})\le \gamma ^2 e^{-\alpha t}v^T(t)v(t). \end{aligned}$$
(73)

Using Dynkin’s formula to (73), we obtain

$$\begin{aligned} \displaystyle {}{e^{-\alpha t}}{V(x(t),i)}-{V(x_0,t_0)}\le \gamma ^2 \int _{0}^{t}e^{-\alpha s}v^T(t)v(t) ds, \end{aligned}$$
(74)

which in turn shows

$$\begin{aligned} V\big (x(t),i\big )&\le e^{\alpha t}V(x_0,t_0)+\gamma ^2 e^{\alpha t} \int _{0}^{t}e^{-\alpha s}v^T(s)v(s) ds \nonumber \\&\le e^{\alpha t}\left[ V(x_0,t_0)+\gamma ^2 d \frac{1-e^{-\alpha t}}{\alpha }\right] . \end{aligned}$$
(75)

This together with \(\tilde{P}_i={H_i^{-1/2}}P_i{H_i^{-1/2}}\) gives rise to

$$\begin{aligned} \begin{array}{ll} V(x(t),i)\le e^{\alpha t} \big [{c_1} \lambda _{\max }(\tilde{P}_i)+\gamma ^2d \frac{(1-e^{-\alpha t})}{\alpha }\big ]. \end{array} \end{aligned}$$
(76)

Taking into account the fact that

$$\begin{aligned} V(x(t),i)=x^T(t){P_i}x(t) \ge \lambda _{\min }(\tilde{P}_i) x^T(t){H_i}x(t), \end{aligned}$$
(77)

\(\forall t\in [0, T]\), we have

$$\begin{aligned} \mathbb {E}\{x^T(t){H_i}x(t)\}\le \frac{e^{\alpha t}\big [{c_1}{\lambda _{\max }(\tilde{P}_i)+\gamma ^2d \frac{(1-e^{-\alpha t})}{\alpha }}\big ]}{\lambda _{\min }(\tilde{P}_i)}<c_2. \end{aligned}$$
(78)

This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Zhao, J. Robust Finite-Time Output Feedback \( H_\infty \) Control for Stochastic Jump Systems with Incomplete Transition Rates. Circuits Syst Signal Process 34, 1799–1824 (2015). https://doi.org/10.1007/s00034-014-9941-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9941-z

Keywords

Navigation