Skip to main content
Log in

LFM Signal Parameters Estimation Using Optimization Approach Initialized by Lipschitz Constant Assisted DIRECT Algorithm

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, the widely used numerical optimization method for estimating linear frequency modulated signal parameters is modified. To this purpose, an improved Dividing RECTangles (DIRECT) algorithm, called the Lipschitz constant assisted DIRECT (L-DIRECT) algorithm, is proposed to substitute for the commonly used Grid Search method. The proposed global optimization algorithm can provide initial estimates for local optimization algorithms such as Newton and Simplex. Based on the classical DIRECT algorithm, the L-DIRECT algorithm eliminates hopeless areas, suspends unlikely areas, and concentrates on promising areas in search space, thus determining the range of attraction for local optimization algorithms with lower SNR thresholds or lessened computational burdens. The effect of the modification is validated by simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.J. Abatzoglou, Fast maximum likelihood joint estimation of frequency and frequency rate. IEEE Trans. Aerosp. Electron. Syst. 11(4), 708–715 (1986)

    Article  Google Scholar 

  2. J. Angeby, M. Viberg, T. Gustafsson, Non-linear instantaneous least squares and its high SNR analysis, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Process. (1999), pp. 1277–1280.

  3. J. Angeby, Estimating parameters using the nonlinear instantaneous least squares approach. IEEE Trans. Signal Process. 48(9), 2721–2731 (2000)

    Google Scholar 

  4. G.A. Bi, X.M. Li, C.M.S. See, LFM signal detection using LPP-Hough transform. Signal Process. 91(5), 1432–1443 (2011)

    Article  MATH  Google Scholar 

  5. L.A. Bulus-Rossini, P.A. Costanzo-Caso, R. Duchowicz et al., Optical pulse compression using the temporal Radon-Wigner transform. Optics Comm. 283(12), 2529–2535 (2010)

    Article  Google Scholar 

  6. L. Cirillo, A. Zoubir, M. Amin, Parameter estimation for locally linear FM signals using a time-frequency hough transform. IEEE Trans. Signal Process. 56(8), 4162–4175 (2008)

    Article  MathSciNet  Google Scholar 

  7. J. M. Gablonsky, Modifications of the DIRECT algorithm. A thesis submitted to the graduate faculty of North Carolina state university. pp. 57–59 (2001).

  8. P.C. Gilmore, C.T. Kelley, An implicit filtering algorithm for optimization of functions with many local minima. SIAM J. Optim. 5(2), 269–285 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Hiwa, T. Hiroyasu, M. Miki, Hybrid Optimization Using DIRECT, GA, and SQP for Global Exploration, in Proceedings of the IEEE Congress on Evolutionary Computation, (2007), pp. 1709–1716.

  10. Z.W. He, N.M. Wang, P.X. Li, Simulated annealing for financing cost distribution based project payment scheduling from a joint perspective. Ann. Oper. Res. 213(1), 203–220 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. D.R. Jones, C.D. Perttunen, B.E. Stuckman, Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory App. 79(1), 157–181 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Jagmal, D. Mihai, SAR image categorization with log cumulants of the fractional fourier transform coefficients. IEEE Trans. Geosci. Remote Sens. 51(12), 5273–5282 (2013)

    Article  Google Scholar 

  13. D. Kalyanmoy, P. Nikhil, Enhancing performance of particle swarm optimization through an algorithmic link with genetic algorithms. Comput. Optim. Appl. 57(3), 761–794 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Lang, L. Liu, Q. Yang, Design of URAs by DIRECT global optimization algorithm. Int. J. Light Electron. Opt. 120(7), 370–373 (2009)

    Article  Google Scholar 

  15. Q.F. Liu, Linear scaling and the DIRECT algorithm. J. Glob. Optim. 56(3), 1233–1245 (2013)

    Article  MATH  Google Scholar 

  16. G. Liuzzi, S. Lucidi, V. Piccialli, A DIRECT-based approach exploiting local minimizations for the solution of large-scale global optimization problems. Comput. Optim. Appl. 45(2), 353–375 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. X.L. Lv, M.D. Xing, S.H. Zhang, Z. Bao, Keystone transformation of the Wigner–Ville distribution for analysis of multicomponent LFM signals. Signal Process. 89(5), 791–806 (2009)

    Article  MATH  Google Scholar 

  18. F. Ruf, A. Neiss, A. Barthels, T. P. Kohler, Design optimization of a 14 V automotive power net using a parallelized DIRECT algorithm in a physical simulation, in Proceedings of the 13th International Conference on Electrical and Electronic Equipment, (2012), pp. 73–80.

  19. J. Robert, Extension of Piyavskii’s algorithm to continuous global optimization. DIMACS technical report, pp. 97–23 (1997).

  20. P. Stoica, R.L. Moses, B. Friedlander, T. Soderstrom, Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements. IEEE Trans. Acoust. Speech Signal Process. 37(3), 378–392 (1989)

    Article  Google Scholar 

  21. D. Younis, Zuomin, trends, features, and tests of common and recently introduced global optimization methods. Eng. Optim. 42(7), 690–718 (2010)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, D., Cheng, N. & Liao, Y. LFM Signal Parameters Estimation Using Optimization Approach Initialized by Lipschitz Constant Assisted DIRECT Algorithm. Circuits Syst Signal Process 34, 2037–2051 (2015). https://doi.org/10.1007/s00034-014-9950-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9950-y

Keywords