Abstract
This paper proposes two circuits of frequency-controlled oscillators, whose structures are based only on simple commercially available active elements with minimum number of terminals, in particular, the differential voltage buffer, controllable voltage amplifier and electronically controllable current conveyor. Two methods for achieving linear control (tuning) of frequency of oscillations (FO) are discussed. The first method employs a simple structure. However, the generated signal level (amplitude) depends on the tuning process. This is a drawback of this method. The second method solves this drawback completely, and the generated signals have constant amplitudes during the tuning of FO. The expected behavior is confirmed by laboratory experiments utilizing commercially available high-speed active elements (current- and voltage-mode multipliers, video difference amplifier). Operational range was tested from frequencies of hundreds of kHz up to frequencies of tens of MHz.






















Similar content being viewed by others
References
AD830: High speed, video difference amplifier, analog devices [online] (2005), last modified 3/2003 [cit.27.4.2014].http://www.analog.com/static/imported-files/data_sheets/AD830.pdf
AD835: 250 MHz, voltage output 4-quadrant, analog devices [online] (1994), last modified 12/2010 [cit. 22.4.2014]. http://www.analog.com/static/imported-files/data_sheets/AD835.pdf
H. Alzaher, CMOS digitally programmable quadrature oscillators. Int. J. Circuit Theory Appl. 36(8), 953–966 (2008). doi:10.1002/cta.479
D.R. Bhaskar, K.K. Abdalla, R. Senani, Electronically-controlled current-mode second order sinusoidal oscillators using MO-OTAs and grounded capacitors. Circuits Syst. 2(2), 65–73 (2011). doi:10.4236/cs.2011.22011
D. Biolek, A. Lahiri, W. Jaikla, M. Siripruchyanun, J. Bajer, Realisation of electronically tunable voltage-mode/current-mode quadrature sinusoidal oscillator using ZC-CG-CDBA. Microelectron. J. 42(10), 1116–1123 (2011). doi:10.1016/j.mejo.2011.07.004
D. Biolek, R. Senani, V. Biolkova, Z. Kolka, Active elements for analog signal processing: classification, review, and new proposal. Radioengineering 17(4), 15–32 (2008)
V. Biolkova, J. Bajer, D. Biolek, Four-phase oscillators employing two active elements. Radioengineering 20(1), 334–339 (2011)
EL2082: Current-Mode Multiplier, Intersil (Elantec) [online] (1996), last modified 2003 [cit.28.7.2011]. http://www.intersil.com/data/fn/fn7152.pdf
J. Galan, R.G. Carvalaj, A. Torralba, F. Munoz, J. Ramirez-Angulo, A low-power low-voltage OTA-C sinusoidal oscillator with large tuning range. IEEE Trans. Circuits Syst. I 52(2), 283–291 (2005). doi:10.1109/TCSI.2004.841599
W. Jaikla, A. Lahiri, Resistor-less current-mode four-phase quadrature oscillator using CCCDTA and grounded capacitors. AEU Int. J. Electron. Commun. 66(3), 214–218 (2012). doi:10.1016/j.aeue.2011.07.001
R. Keawon, W. Jaikla, A resistor-less current-mode quadrature sinusoidal oscillator employing single CCCDTA and grounded capacitors. Prz. Elektrotech. 87(8), 138–141 (2011)
F. Khateb, F. Kacar, N. Khatib, D. Kubanek, High-precision differential-input buffered and external transconductance amplifier for low-voltage low-power applications. Circuits Syst. Signal Process. 32(2), 453–476 (2013). doi:10.1007/s00034-012-9470-6
H. Kuntman, A. Ozpinar, On the realization of DO-OTA-C oscillators. Microelectron. J. 29(12), 991–997 (1998). doi:10.1016/S0026-2692(98)00063-9
A. Lahiri, Current-mode variable frequency quadrature sinusoidal oscillator using two CCs and four passive components including grounded capacitors. Analog Integr. Circuits Signal Process. 71(2), 303–311 (2012). doi:10.1007/s10470-010-9571-8
A. Lahiri, M. Gupta, Realizations of grounded negative capacitance using CFOAs. Circuits Syst. Signal Process. 30(1), 143–155 (2011). doi:10.1007/s00034-010-9215-3
Y. Li, Electronically tunable current-mode biquadratic filter and four-phase quadrature oscillator. Microelectron. J. 45(3), 330–335 (2014). doi:10.1016/j.mejo.2013.12.005
Y. Li, Electronically tunable current-mode quadrature oscillator using single MCDTA. Radioengineering 19(4), 667–671 (2010)
B. Linarez-Barranco, A. Rodriguez-Vazquez, E. Sanchez-Sinencio, L. Huertas, CMOS OTA-C High frequency sinusoidal oscillators. IEEE J. Solid State Circuits 26(2), 160–165 (1991). doi:10.1109/4.68133
OPA2652: Dual 700 MHz, Voltage-Feedback Operational Amplifier, Texas Instruments [online]. (2006), last modified 5/2006 [cit.27.4.2014]. http://www.ti.com/lit/ds/symlink/opa2652.pdf
N. Pandey, S. K. Paul, Single CDTA-based current mode all-pass filter and its applications. J. Electr. Comput. Eng. 1–5 (2011). doi:10.1155/2011/897631
A. Rodriguez-Vazquez, B. Linarez-Barranco, L. Huertas, E. Sanchez-Sinencio, On the design of voltage-controlled sinusoidal oscillators using OTA’s. IEEE Trans. Circuits Syst. I 37(2), 198–211 (1990). doi:10.1109/31.45712
Ch. Sakul, W. Jaikla, K. Dejhan, New resistorless current-mode quadrature oscillators using 2 CCCDTAs and grounded capacitors. Radioengineering 20(4), 890–897 (2011)
A.M. Soliman, Two integrator loop quadrature oscillators: A review. J. Adv. Res. 4(1), 1–11 (2013). doi:10.1016/j.jare.2012.03.001
R. Sotner, A. Lahiri, A. Kartci, N. Herencsar, J. Jerabek, K. Vrba, Design of novel precise quadrature oscillators employing ECCIIs with electronic control. Adv. Electr. Comput. Eng. 13(2), 65–72 (2013). doi:10.4316/AECE.2013.02011
R. Sotner, J. Jerabek, N. Herencsar, Voltage differencing buffered/ inverted amplifiers and their applications for signal generation. Radioengineering 22(2), 490–504 (2013)
R. Sotner, N. Herencsar, J. Jerabek, J. Koton, T. Dostal, K. Vrba, Electronically controlled oscillator with linear frequency adjusting for four-phase or differential quadrature output signal generation. Int. J. Circuit Theory Appl. 42(12), 1264–1289 (2014). doi:10.1002/cta.1919
R. Sotner, N. Herencsar, J. Jerabek, R. Dvorak, A. Kartci, T. Dostal, K. Vrba, New double current controlled CFA (DCC-CFA) based voltage mode oscillator with independent electronic control of oscillation condition and frequency. J. Electr. Eng. 64(2), 65–75 (2013). doi:10.2478/jee-2013-0010
R. Sotner, Z. Hrubos, N. Herencsar, J. Jerabek, T. Dostal, K. Vrba, Precise Electronically adjustable oscillator suitable for quadrature signal generation employing active elements with current and voltage gain control. Circuits Syst. Signal Process. 33(1), 1–35 (2014). doi:10.1007/s00034-013-9623-2
S. Summart, Ch. Thongsopa, W. Jaikla, CCCIIs-based sinusoidal quadrature oscillators with non-interactive control of condition and frequency. Indian J. Pure Appl. Phys. 52(4), 277–283 (2014)
S. Summart, S. Tongsopa, W. Jaikla, OTA based current-mode sinusoidal quadrature oscillator with non-interactive control. Prz. Elektrotech. 88(7a), 14–17 (2012)
Texas Instruments. OPA860 Wide-bandwidth, operational transconductance amplifier (OTA) and buffer (online), http://www.ti.com/lit/ds/symlink/opa860.pdf
VCA810: High Gain Adjust Range, Wideband, variable gain amplifier, Texas Instruments [online] (2003), last modified 12/2010 [cit.28.7.2011]. http://focus.ti.com/lit/ds/sbos275f/sbos275f.pdf
Acknowledgments
Research described in this paper was financed by Czech Ministry of Education in frame of National Sustainability Program under Grant LO1401. For research, infrastructure of the SIX Center was used. Research described in the paper was supported by Czech Science Foundation project under No. 14-24186P. Grant No. FEKT-S-14-2281 also supported this research. The support of the Project CZ.1.07/2.3.00/20.0007 WICOMT, financed from the operational program Education for competitiveness, is gratefully acknowledged. The authors would like to thank the editor and the anonymous reviewers for their useful and constructive comments that helped to improve the paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sotner, R., Jerabek, J., Langhammer, L. et al. Comparison of Two Solutions of Quadrature Oscillators With Linear Control of Frequency of Oscillation Employing Modern Commercially Available Devices. Circuits Syst Signal Process 34, 3449–3469 (2015). https://doi.org/10.1007/s00034-015-0015-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-015-0015-7