Skip to main content
Log in

A Sub-\({100\,\hbox {ppm}/{^{\circ }\hbox {C}}}\) Temperature-Compensated High-Frequency CMOS Relaxation Oscillator

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A temperature-compensated high-frequency CMOS integrated relaxation oscillator with low frequency variations is presented. A current-controlled oscillator topology is employed with a resistive source-degenerated transconductor and a current comparator to achieve high oscillation frequency and low power dissipation. The proposed oscillator was designed with process parameters from a standard 0.35-\(\upmu \)m CMOS technology and a 2.5-V single power supply voltage. At a nominal oscillation frequency of 21 MHz, the total power dissipation of the circuit was 201 \(\upmu \)W. Post-layout simulation results showed that the frequency variations were less than \({34.16\,\hbox {ppm}/{^{\circ }\hbox {C}}}\) over a temperature range of \(-40\) to \(+120\,^{\circ }\hbox {C}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Bae, K. Song, H. Lee, H. Cho, H.-J. Yoo, A low-energy crystal-less double-FSK sensor node transceiver for wireless body-area network. IEEE J. Solid State Circuits 47(11), 2678–2692 (2012)

    Article  Google Scholar 

  2. Y. Cao, P. Leroux, W. De Cock, M. Steyaert, A 63,000 Q-factor relaxation oscillator with switched-capacitor integrated error feedback. In 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2013), pp. 186–187

  3. Y.-H. Chiang, S.-I. Liu, A submicrowatt 1.1-MHz CMOS relaxation oscillator with temperature compensation. IEEE Trans. Circuits Syst. II Express Briefs 60(12), 837–841 (2013)

    Article  MathSciNet  Google Scholar 

  4. V. De Smedt, P. De Wit, W. Vereecken, M.S.J. Steyaert, A 66 \(\mu \)w 86 ppm/\(^\circ \)c fully-integrated 6 MHz Wienbridge oscillator with a 172 dB phase noise FOM. IEEE J. Solid State Circuits 44(7), 1990–2001 (2009)

    Article  Google Scholar 

  5. U. Denier, Analysis and design of an ultralow-power CMOS relaxation oscillator. IEEE Trans. Circuits Syst. I Reg. Pap. 57(8), 1973–1982 (2010)

    Article  MathSciNet  Google Scholar 

  6. P.F.J. Geraedts, E.A.J.M. van Tuijl, E.A.M. Klumperink, G.J.M. Wienk, B. Nauta, Towards minimum achievable phase noise of relaxation oscillators. Int. J. Circuit Theory Appl. 42, 238–257 (2012)

    Article  Google Scholar 

  7. K.-K. Huang, D.D. Wentzloff, A 1.2-MHz 5.8-\({\mu } {W}\) temperature-compensated relaxation oscillator in 130-nm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 61(5), 334–338 (2014)

    Article  Google Scholar 

  8. A. Paidimarri, D. Griffith, A. Wang, A.P. Chandrakasan, G. Burra, A 120 nW 18.5 kHz RC oscillator with comparator offset cancellation for \(\pm \)0.25 % temperature stability. In 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (2013), pp. 184–185

  9. A. Rodriguez-Vazquez, R. Dominguez-Castro, F. Medeiro, M. Delgado-Restituto, High resolution CMOS current comparators: design and applications to current-mode function generation. Analog Integr. Circuits Signal Process. 7(2), 149–165 (1995)

    Article  Google Scholar 

  10. F. Sebastiano, L.J. Breems, K.A.A. Makinwa, S. Drago, D.M.W. Leenaerts, B. Nauta, A 65-nm CMOS temperature-compensated mobility-based frequency reference for wireless sensor networks. IEEE J. Solid State Circuits 46(7), 1544–1552 (2011)

    Article  Google Scholar 

  11. Y.-C. Shih, B. Otis, An on-chip tunable frequency generator for crystal-less low-power WBAN radio. IEEE Trans. Circuits Syst. II Express Briefs 60(4), 187–191 (2013)

    Article  Google Scholar 

  12. K. Sundaresan, P.E. Allen, F. Ayazi, Process and temperature compensation in a 7-MHz CMOS clock oscillator. IEEE J. Solid State Circuits 41(2), 433–442 (2006)

    Article  Google Scholar 

  13. T. Tokairin, K. Nose, K. Takeda, K. Noguchi, T. Maeda, K. Kawai, M. Mizuno, A 280 nW, 100 kHz, 1-cycle start-up time, on-chip CMOS relaxation oscillator employing a feedforward period control scheme. In 2012 Symposium on VLSI Circuits (VLSIC) (2012), pp. 16–17

  14. Y. Tokunaga, S. Sakiyama, A. Matsumoto, S. Dosho, An on-chip CMOS relaxation oscillator with voltage averaging feedback. IEEE J. Solid State Circuits 45(6), 1150–1158 (2010)

    Article  Google Scholar 

  15. H. Traff, Novel approach to high speed CMOS current comparators. Electron. Lett. 28(3), 310–312 (1992)

    Article  Google Scholar 

  16. Y. Tsividis, C. McAndrew, Operation and Modeling of the MOS Transistor (Oxford University Press, New York, 2011)

    Google Scholar 

  17. L. Yan, G. Yuan, L. Der, W.-H. Ki, C.P. Yue, A 0.5 % precision on-chip frequency reference with programmable switch array for crystal-less applications. IEEE Trans. Circuits Syst. II Express Briefs 60(10), 642–646 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apinunt Thanachayanont.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakphrom, S., Georgiou, P. & Thanachayanont, A. A Sub-\({100\,\hbox {ppm}/{^{\circ }\hbox {C}}}\) Temperature-Compensated High-Frequency CMOS Relaxation Oscillator. Circuits Syst Signal Process 35, 29–42 (2016). https://doi.org/10.1007/s00034-015-0057-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0057-x

Keywords

Navigation