Skip to main content
Log in

Multi-Source DOA Estimation Using an Acoustic Vector Sensor Array Under a Spatial Sparse Representation Framework

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper investigates the estimation of the two-dimensional direction of arrival (2D-DOA) of sound sources using an acoustic vector sensor array (AVSA) within a spatial sparse representation (SSR) framework (AVS-SSR-DOA). SSR-DOA estimation methods rely on a pre-defined grid of possible source DOAs and essentially suffer from the grid-effect problem: Reducing the size of the grid spacing leads to increased computational complexity. In this paper, we propose a two-step approach to tackle the grid-effect problem. Specifically, omnidirectional sensor array-based SSR-DOA estimation firstly provides initial low-cost DOA estimates using a coarse grid spacing. Secondly, a closed-form solution is derived by exploring the unique subarray manifold matrix correlation and subarray signal correlation of the AVSA, which allows for DOA estimates between the pre-defined angles of the grid and potentially achieves higher DOA estimation accuracy. To further alleviate the estimation bias due to noise and sparse representation model errors, line-fitting (LF) techniques and subspace techniques (ST) are employed to develop two novel DOA estimation algorithms, referred to as AVS-SSR-LF and AVS-SSR-ST, respectively. Extensive simulations validate the effectiveness of the proposed algorithms when estimating the DOAs of multiple sound sources. The proposed AVS-SSR-ST algorithm achieves high DOA estimation accuracy and is robust to various noise levels and source separation angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Chen, J. Zhao, Coherent signal-subspace processing of acoustic vector sensor array for DOA estimation of wideband sources. Signal Process. 85(4), 837–847 (2005)

    Article  MATH  Google Scholar 

  2. I. Gorodnitsky, B. Rao, Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997)

    Article  Google Scholar 

  3. M. Grant, S. Boyd, CVX: matlab software for disciplined convex programming. http://cvxr.com/cvx/ (2011)

  4. M. Hawkes, A. Nehorai, Acoustic vector-sensor beamforming and Capon direction estimation. IIEEE Trans. Signal Process. 46(9), 2291–2304 (1998)

    Article  Google Scholar 

  5. M.M. Hyder, K. Mahata, Direction-of-arrival estimation using a mixed \(l_{2,0}\) norm approximation. IEEE Trans. Signal Process. 58(9), 4646–4655 (2010)

    Article  MathSciNet  Google Scholar 

  6. H. Krim, M. Viberg, Two decades of array signal processing research: the parametric approach. IEEE Signal Process. Mag. 13(4), 67–94 (1996)

    Article  Google Scholar 

  7. B. Li, Y.X. Zou, Y.S. Zhu, Direction estimation under compressive sensing framework: a review and experimental results, in Proceedings of IEEE International Conference on Information and Automation ( ICIA) (2011), pp. 63-68

  8. B. Li, Y.X. Zou, Improved DOA estimation with acoustic vector sensor arrays using spatial sparsity and subarray manifold, in Proceedings of the ICASSP (2012), pp. 2557–2560

  9. Z. Liu, X. Ruan, J. He, Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array. Multidimens. Syst. Sign. Process. 24(1), 105–120 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. D.M. Malioutov, A sparse signal reconstruction perspective for source localization with sensor arrays. http://ssg.mit.edu/~dmm/publications/malioutov_MS_thesis.pdf (2003)

  11. D.M. Malioutov, M. Cetin, A. Willsky, A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Proces. 53(8), 3010–3022 (2005)

    Article  MathSciNet  Google Scholar 

  12. A. Nehorai, E. Paldi, Acoustic vector-sensor array processing. IEEE Trans. Signal Process. 42(9), 2481–2491 (1994)

    Article  Google Scholar 

  13. P. Palanisamy, N. Kalyanasundaram, P.M. Swetha, Two-dimensional DOA estimation of coherent signals using acoustic vector sensor array. Signal Process. 92(1), 19–28 (2012)

    Article  Google Scholar 

  14. P. Tichavský, K.T. Wong, M.D. Zoltowski, Near-field/far-field azimuth and elevation angle estimation using a single vector hydrophone. IEEE Trans. Signal Process. 49(11), 2498–2510 (2001)

    Article  Google Scholar 

  15. E.W. Weisstein, Least squares fitting. http://mathworld.wolfram.com/LeastSquaresFitting.html (2012)

  16. K.T. Wong, M.D. Zoltowski, Closed-form underwater acoustic direction-finding with arbitrarily spaced vector hydrophones at unknown locations. IEEE J. Ocean. Eng. 22(3), 649–658 (1997)

    Article  Google Scholar 

  17. K.T. Wong, M.D. Zoltowski, Extended-aperture underwater acoustic multisource azimuth/elevation direction-finding using uniformly but sparsely spaced vector hydrophones. IEEE J. Ocean. Eng. 22(4), 659–672 (1997)

    Article  Google Scholar 

  18. K.T. Wong, M.D. Zoltowski, Root-MUSIC-based azimuth-elevation angle-of-arrival estimation with uniformly spaced but arbitrarily oriented velocity hydrophones. IEEE Trans. Signal Process. 47(12), 3250–3260 (1999)

    Article  Google Scholar 

  19. K.T. Wong, M.D. Zoltowski, Self-initiating MUSIC-based direction finding in underwater acoustic particle velocity-field beamspace. IEEE J. Ocean. Eng. 25(2), 262–273 (2000)

    Article  Google Scholar 

  20. Y.I. Wu, K.T. Wong, Acoustic near-field source-localization by two passive anchor-nodes. IEEE Trans. Aerosp. Electron. Syst. 48(1), 159–169 (2012)

    Article  Google Scholar 

  21. Y. Xu, Z. Liu, J. Cao, Noncircularity-exploitation in direction estimation of noncircular signals with an acoustic vector-sensor. Digit. Signal Process. 18(5), 777–796 (2008)

    Article  Google Scholar 

  22. X. Xu, X. Wei, Z. Ye, DOA estimation based on sparse signal recovery utilizing weighted \(l_{1}\)-norm penalty. IEEE Signal Process. Lett. 19(3), 155–158 (2012)

    Article  Google Scholar 

  23. J. Yin, T. Chen, Direction-of-Arrival estimation using a sparse representation of array covariance vectors. IEEE Trans. Signal Process. 59(9), 4489–4493 (2011)

    Article  MathSciNet  Google Scholar 

  24. J. Zheng, M. Kaveh, H. Tsuji, Sparse spectral fitting for Direction of Arrival and power estimation, in IEEE/SP 15th Workshop on Statistical Signal Processing (2009), pp. 429–432

  25. J. Zheng, M. Kaveh, Direction-of-arrival estimation using a sparse spatial spectrum model with uncertainty, in Proceedings of the ICASSP (2011), pp. 2848–2851

  26. C. Zheng, G. Li, H. Zhang, X. Wang, An approach of DOA estimation using noise subspace weighted \(l_{1}\) minimization, in Proceedings of the ICASSP (2011), pp. 2856–2859

  27. X. Zhong, A.B. Premkumar, A.S. Madhukumar, Particle filtering and posterior Cramér-Rao bound for 2-D direction of arrival tracking using an acoustic vector sensor. IEEE Sens. J. 12(2), 363–377 (2012)

    Article  Google Scholar 

  28. X. Zhong, A.B. Premkumar, Particle filtering approaches for multiple acoustic source detection and 2-D direction of arrival estimation using a single acoustic vector sensor. IEEE Trans. Signal Proces. 60(9), 4719–4733 (2012)

    Article  MathSciNet  Google Scholar 

  29. H. Zhu, G. Leus, G.B. Giannakis, Sparsity-cognizant total least-squares for perturbed compressive sampling. IEEE Trans. Signal Process. 59(5), 2002–2016 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (No: 61271309) and the Shenzhen Science and Technology Fundamental Research Program (No: JCY201110006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Xian Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, YX., Li, B. & Ritz, C.H. Multi-Source DOA Estimation Using an Acoustic Vector Sensor Array Under a Spatial Sparse Representation Framework. Circuits Syst Signal Process 35, 993–1020 (2016). https://doi.org/10.1007/s00034-015-0102-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0102-9

Keywords

Navigation