Skip to main content
Log in

Quantized Observer-Based Sliding Mode Control for Networked Control Systems Via the Time-Delay Approach

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper investigates the sliding mode control problem for networked control systems, which are influenced by the non-ideal network environment, such as network-induced delays, packet dropouts and quantization errors. The states of the system are assumed to be unavailable, and an observer is designed to estimate the state of the system, based on which a sliding mode controller is given to guarantee the closed-loop system to be stable. Furthermore, it is shown that the proposed control scheme ensures the reachability of the sliding surfaces in both the state estimate space and the estimation error space. Finally, a numerical example is given to illustrated the effectiveness of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Bo, G. Wang, General observer-based controller design for singular Markovian jump systems. Int. J. Innov. Comput. Inf. Control 10(5), 1897–1913 (2014)

    Google Scholar 

  2. Y. Cao, Y. Sun, J. Lam, Delay dependent robust \(H_\infty \) control for uncertain systems with time varying delays. IEEE Proc. Control Theory Appl. 143(3), 338–344 (1998)

    Article  Google Scholar 

  3. F. Chen, R. Hou, B. Jiang, G. Tao, Study on fast terminal sliding mode control for a helicopter via quantum information technique and nonlinear fault observer. Int. J. Innov. Comput. Inf. Control 9(8), 3437–3447 (2013)

    Google Scholar 

  4. M. Fu, L. Xie, The sector bound approach to quantized feedback control. IEEE Trans. Autom. Control 50(11), 1698–1711 (2005)

    Article  MathSciNet  Google Scholar 

  5. H. Gao, T. Chen, J. Lam, A new delay system approach to network-based control. Automatica 44(1), 39–52 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Gao, X. Meng, T. Chen, Stabilization of networked control systems with a new delay characterization. IEEE Trans. Autom. Control 53(9), 2142 (2008)

    Article  MathSciNet  Google Scholar 

  7. H. Gao, T. Chen, \(H_\infty \) estimation for uncertain systems with limited communication capacity. IEEE Trans. Autom. Control 52(11), 2070–2084 (2007)

    Article  MathSciNet  Google Scholar 

  8. H. Gao, Y. Zhao, J. Lam, K. Chen, Fuzzy filtering of nonlinear systems with intermittent measurements. IEEE Trans. Fuzzy Syst. 17(2), 291–300 (2009)

    Article  Google Scholar 

  9. H. Gao, X. Meng, T. Chen, J. Lam, Stabilization of networked control systems via dynamic output-feedback controllers. SIAM J. Control Optim. 48(5), 3643–3658 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Gao, T. Chen, A new approach to quantized feedback control systems. Automatica 44(2), 534–542 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. W.J. Kim, K. Ji, A. Ambike, Networked real-time control strategies dealing with stochastic time delays and packet losses. Proc. Am. Control Conf. 1, 621–626 (2005)

    Google Scholar 

  12. H. Li, C. Wu, P. Shi, Y. Gao, Control of nonlinear networked systems with packet dropouts: interval type-2 fuzzy model-based approach. IEEE Trans. Cybern. doi:10.1109/TCYB.2014.2371814

  13. H. Li, C. Wu, L. Wu, H.K. Lam, Y. Gao, Filtering of interval type-2 fuzzy systems with intermittent measurements. IEEE Trans. Cybern. doi:10.1109/TCYB.2015.2413134

  14. F. Li, P. Shi, L. Wu, M. Basin, C. Lim, Quantized control design for cognitive radio networks modeled as nonlinear semi-Markovian jump systems. IEEE Trans. Ind. Electron. 62(4), 2330–2340 (2015)

    Article  Google Scholar 

  15. P. Liu, State feedback stabilization of time-varying delay uncertain systems: a delay decomposition approach. Linear Algebra Appl. 438(5), 2188–2209 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Lu, Y. Xu, A. Xue, \(H_\infty \) filtering for singular systems with communication delays. Signal Process 90, 1240–1248 (2010)

    Article  MATH  Google Scholar 

  17. F. Li, P. Shi, L. Wu, X. Zhang, Fuzzy-model-based D-stability and non-fragile control for discrete-time descriptor systems with multiple delays. IEEE Trans. Fuzzy Syst. 22(4), 1019–1025 (2014)

    Article  Google Scholar 

  18. H. Li, J. Yu, C. Hilton, H. Liu, Adaptive sliding-mode control for nonlinear active suspension vehicle systems using TCS fuzzy approach. IEEE Trans. Ind. Electron. 60(8), 3328–3338 (2013)

    Article  Google Scholar 

  19. H. Li, H. Gao, P. Shi, X. Zhao, Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica 50(7), 1825–1834 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Li, L. Wu, P. Shi, C.C. Lim, State estimation and sliding-mode control for semi-Markovian jump systems with mismatched uncertainties. Automatica 51, 385–393 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Li, Z. Sun, H. Liu, M.Y. Chow, Predictive observer-based control for networked control systems with network-induced delay and packet dropout. Asian J. Control 10, 638–650 (2008)

    Article  MathSciNet  Google Scholar 

  22. J. Lian, F. Zhang, P. Shi, Sliding mode control of uncertain stochastic hybrid delay systems with average dwell time. Circuits Syst. Signal Process 31(2), 539–553 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Liu, X. Cao, S. Zhang, W. Yang, Sliding mode control of quantized systems against bounded disturbances. Inf. Sci. 274, 261–272 (2014)

    Article  MathSciNet  Google Scholar 

  24. M. Liu, J. You, Observer-based controller design for networked control systems with sensor quantisation and random communication delay. Int. J. Intell. Syst. 43(10), 1901–1912 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Y. Niu, J. Lam, X. Wang, D.W.C. Ho, Observer-based sliding mode control for nonlinear state-delayed systems. Int. J. Intell. Syst. 35(2), 139–150 (2004)

    MathSciNet  MATH  Google Scholar 

  26. A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay systems. Automatica 49(9), 2860–2866 (2013)

    Article  MathSciNet  Google Scholar 

  27. X. Su, P. Shi, L. Wu, M.V. Basin, Reliable filtering with strict dissipativity for T-S fuzzy time-delay systems. IEEE Trans. Cybern. 44(12), 2470–2483 (2014)

    Article  Google Scholar 

  28. X. Su, L. Wu, P. Shi, Y. Song, A novel approach to output feedback control of fuzzy stochastic systems. Automatica 50(12), 3268–3275 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Shi, X. Luan, F. Liu, \(H_\infty \) filtering for discrete-time systems with stochastic incomplete measurement and mixed delays. IEEE Trans. Ind. Electron. 59(6), 2732–2739 (2012)

    Article  Google Scholar 

  30. E. Tian, D. Yue, X. Zhao, Quantised control design for networked control systems. IET Control Theory Appl. 1(6), 1693–1699 (2007)

    Article  Google Scholar 

  31. V. Vesely, D. Rosinova, T.N. Quang, Networked output feedback robust predictive controller design. Int. J. Innov. Comput. Inf. Control 9(10), 3941–3953 (2013)

    Google Scholar 

  32. T. Wang, H. Gao, J. Qiu, A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Trans. Neural Netw. Learn. Syst. doi:10.1109/TNNLS.2015.2411671

  33. H. Wang, P. Shi, C.C. Lim, Q. Xue, Event-triggered control for networked Markovian jump systems. Int. J. Robust Nonlinear Control. doi:10.1002/rnc.3273

  34. Z. Wang, D.W.C. Ho, Y. Liu, Robust \(H_\infty \) control for a class of nonlinear discrete time-delay stochastic systems with missing measurements. Automatica 45(3), 684–691 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. L. Wu, X. Su, P. Shi, Sliding mode control with bounded \({L}_2\) gain performance of Markovian jump singular time-delay systems. Automatica 48(8), 1929–1933 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. L. Wu, W. Zheng, Passivity-based sliding mode control of uncertain singular time-delay systems. Automatica 45(9), 2120–2127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. L. Wu, W. Zheng, H. Gao, Dissipativity-based sliding mode control of switched stochastic systems. IEEE Trans. Autom. Control 58(3), 785–791 (2013)

    Article  MathSciNet  Google Scholar 

  38. L. Wu, P. Shi, H. Gao, State estimation and sliding-mode control of Markovian jump singular systems. IEEE Trans. Autom. Control 55(5), 1213–1219 (2010)

    Article  MathSciNet  Google Scholar 

  39. M. Wu, Y. He, J. She, G. Liu, Delay-dependent criteria for robust stability of time-varying delay system. Automatica 40, 1435–1439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Y. Xu, H. Su, Y. Pan, Z. Wu, W. Xu, Stability analysis of networked control systems with Round-Robin scheduling and packet dropouts. J. Franklin Inst. 350(8), 2013–2027 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Y. Xu, H. Su, Y. Pan, Output feedback stabilization for Markov-based nonuniformly sampled-data networked control systems. Syst. Control Lett. 62(8), 656–663 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Y. Xu, H. Su, Y. Pan, Z. Wu, Robust \(H_\infty \) filtering for networked stochastic systems with randomly occurring sensor nonlinearities and packet dropouts. Sig. Process. 93(7), 1794–1803 (2013)

    Article  Google Scholar 

  43. R. Yang, G. Liu, P. Shi, C. Thomas, M.V. Basin, Predictive output feedback control for networked control systems. IEEE Trans. Ind. Electron. 61(1), 512–520 (2014)

    Article  Google Scholar 

  44. D. Yue, Q.L. Han, J. Lam, Network-based robust \(H_\infty \) control with systems with uncertainty. Automatica 41, 999–1007 (2005)

  45. R. Yang, P. Shi, G. Liu, Filtering for discrete-time networked nonlinear systems with mixed random delays and packet dropouts. IEEE Trans. Autom. Control 11(56), 2655–2660 (2011)

    Article  MathSciNet  Google Scholar 

  46. J. Zhao, B. Jiang, P. Shi, Z. He, Fault tolerant control for damaged aircraft based on sliding mode control scheme. Int. J. Innov. Comput. Inf. Control 10(1), 293–302 (2014)

    Google Scholar 

  47. H. Zhang, J. Wang, Y. Shi, Robust sliding-mode control for Markovian jump systems subject to intermittent observations and partially known transition probabilities. Syst. Control Lett. 62(12), 1114–1124 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the China National Funds for Distinguished Young Scientists under Grant (61425009), in part by the National Natural Science Foundation of China under Grants (61305135, 61427808, 61333009, 61320106009, 61320106010, 61374083), and in part by National Key Basic Research Program of People’s Republic of China under Grants 2012CB821204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renquan Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, R., Yang, P., Bai, J. et al. Quantized Observer-Based Sliding Mode Control for Networked Control Systems Via the Time-Delay Approach. Circuits Syst Signal Process 35, 1563–1577 (2016). https://doi.org/10.1007/s00034-015-0128-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0128-z

Keywords

Navigation