Skip to main content
Log in

1-V Inverting and Non-inverting Loser-Take-All Circuit and Its Applications

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A new solution for a non-conventional loser-take-all (LTA) circuit is proposed in the paper. The circuit possesses several inverting and non-inverting input terminals and an additional current output, which increases its versatility and allows simplifying its possible applications. In order to show its usefulness and versatility, several new applications of the proposed LTA have also been developed, including a simple digital-to-analog converter, an n-bit programmable adder/summer, a chopper modulator and a precision rectifier. The LTA has been designed and fabricated with a 0.35 \(\upmu \hbox {m}\) CMOS I3T25 AMIS process, exploiting the recently proposed bulk-driven quasi-floating-gate technique. The LTA circuit operates from 1 V supply and dissipates 74 \(\upmu \hbox {W}\) of power. The simulations performed in Cadence environment and the measurements of a real chip confirm the attractive features of the proposed LTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. I. Baturone, J.L. Huertas, A. Barriga, S. Sanchez-Solano, Current-mode multiple-input max circuit. Electron. Lett. 30, 678–680 (1994)

    Article  Google Scholar 

  2. I. Baturone, S. Sanchez-Solano, A. Barriga, J.L. Huertas, Implementation of CMOS fuzzy controllers as mixed-signal integrated circuits. IEEE Trans. Fuzzy Syst. 5, 1–19 (1997)

    Article  Google Scholar 

  3. R. Carvajal, J. Ramirez-Angulo, J. Martinez-Heredia, High-speed high-precision min/max circuits in CMOS technology. Electron. Lett. 36, 697–699 (2000)

    Article  Google Scholar 

  4. H. Chaoui, CMOS analogue adder. Electron. Lett. 31, 180–181 (1995)

    Article  Google Scholar 

  5. R. Fried, C.C. Enz, Simple and accurate voltage adder/subtractor. Electron. Lett. 33, 944–945 (1997)

    Article  Google Scholar 

  6. C.Y. Huang, B.D. Liu, Current-mode multiple input maximum circuit for fuzzy logic controllers. Electron. Lett. 30, 1924–1925 (1994)

    Article  Google Scholar 

  7. F. Khateb, J. Vávra, D. Biolek, A novel current-mode full-wave rectifier based on one CDTA and two diodes. Radioengineering 19, 437–445 (2010)

  8. F. Khateb, S. Bay Abo Dabbous, S. Vlassis, A survey of non-conventional techniques for low-voltage, low-power analog circuits design. Radioengineering 22, 415–427 (2013)

    Google Scholar 

  9. F. Khateb, Bulk-driven floating-gate and bulk-driven quasi-floating-gate techniques for low-voltage, low-power analog circuits design. Int. J. Electron. Commun. (AEU) 68, 64–72 (2014)

    Article  Google Scholar 

  10. F. Khateb, M. Kumngern, S. Vlassis, C. Psychalinos, T. Kulej, Sub-volt fully balanced differential difference amplifier. Circuits Syst. Comput. J. 24, 1550005-1–1550005-18 (2015)

    Article  Google Scholar 

  11. F. Khateb, S. Vlassis, M. Kumngern, C. Psychalinos, T. Kulej, R. Vrba, L. Fujcik, 1 V Rectifier based on bulk-driven quasi-floating-gate differential difference amplifiers. Circuits Syst. Signal Process. 34, 2077–2089 (2015)

    Article  Google Scholar 

  12. F. Khateb, The experimental results of the bulk-driven quasi-floating-gate MOS transistor. Int. J. Electron. Commun. (AEU) 69, 462–466 (2015)

    Article  Google Scholar 

  13. F. Khateb, S. Vlassis, Low-voltage bulk-driven rectifier for biomedical applications. Microelectron. J. 44, 642–648 (2013)

    Article  Google Scholar 

  14. P.R. Kinget, Device mismatch and tradeoffs in the design of analog circuits. IEEE J. Solid State Circuits 40, 1212–1224 (2005)

    Article  Google Scholar 

  15. T. Kulej, G. Blakiewicz, A 0.5 V bulk-driven voltage follower/DC level shifter and its application in class AB output stage. Int. J. Circuit Theory Appl. (2014). doi:10.1002/cta.2029

  16. T. Kulej, 0.5-V bulk-driven CMOS operational amplifier. IET Circuits Devices Syst. 7, 352–360 (2013)

    Article  Google Scholar 

  17. T. Kulej, 0.4-V bulk-driven operational amplifier with improved input stage. Circuits Syst. Signal Process. 34, 1167–1185 (2015)

    Article  MathSciNet  Google Scholar 

  18. T. Kulej, 0.5-V bulk-driven OTA and its applications. Int. J. Circuit Theory Appl. 43, 187–204 (2015)

    Article  Google Scholar 

  19. T. Kulej, F. Khateb, Bulk-driven adaptively biased OTA in 0.18 \(\upmu \)m CMOS. Electron. Lett. 51, 458–460 (2015)

    Article  Google Scholar 

  20. T. Kulej, F. Khateb, 0.4-V bulk-driven differential–difference amplifier. Microelectron. J. 46, 362–369 (2015)

    Article  Google Scholar 

  21. M. Kumngern, New chopper modulators using differential voltage current conveyor. Radioengineering 20, 423–427 (2011)

    Google Scholar 

  22. J. Lazzaro, S. Lyckenbush, M.A. Malhowad, C. Mead, Winner take-all of o(n) complexity, in Advances in Neural Signal Processing Systems, ed. by D.S. Touretzky (Morgan Kaufmann, Los Altos, 1989)

    Google Scholar 

  23. A. Monpapassorn, Chopper modulators using current conveyor analogue switches. Analog Integr. Circuits Signal Process. 45, 155–162 (2005)

    Article  Google Scholar 

  24. A. Monpapassorn, Programmable wide range voltage adder/subtractor and its application as an encoder. IEE Proc. Circuits Devices Syst. 152, 697–702 (2005)

    Article  Google Scholar 

  25. I. Opris, Rail-to-rail multiple-input min/max circuit. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 45, 137–140 (1998)

    Article  Google Scholar 

  26. V.A. Pedroni, B.U. Pedroni, Output stage based high-resolution min/max and rank-order filters. IEEE Trans. CAS-II 52, 28–32 (2005)

    Google Scholar 

  27. M. Pelgrom, A. Duinmaijer, A. Welbers, Matching properties of MOS transistors. IEEE J. Solid State Circuits 24, 1433–1440 (1989)

    Article  Google Scholar 

  28. P. Promme, K. Chattrakun, CMOS WTA maximum and minimum circuits with their applications to analog switch and rectifiers. Microelectron. J. 42, 52–62 (2011)

    Article  Google Scholar 

  29. G. Raikos, S. Vlassis, C. Psychalinos, 0.5 V bulk-driven analog building blocks. AEÜ Int. J. Electron. Commun. 66, 920–927 (2012)

    Article  Google Scholar 

  30. G. Raikos, S. Vlassis, 0.8 V bulk-driven operational amplifier. Analog Integr. Circuits Signal Process. 63, 425–432 (2010)

    Article  Google Scholar 

  31. N. Raj, A.K. Singh, A.K. Gupta, Low-voltage bulk-driven self-biased cascode current mirror with bandwidth enhancement. Electron. Lett. 50, 23–25 (2014)

    Article  Google Scholar 

  32. F. Rezvan, E. Farshidi, A FG-MOS based fully differential current controlled conveyor and its applications. Circuits Syst. Signal Process. 32, 993–1011 (2013)

    Article  Google Scholar 

  33. S. Vlassis, F. Khateb, Automatic tuning circuit for bulk-controlled sub-threshold MOS resistor. Electron. Lett. 50, 432–434 (2014)

    Article  Google Scholar 

  34. K. Wawryn, B. Strzeszewski, Current mode circuits for programmable WTA neural network. Analog Integr. Circuits Signal Process. 27, 49–69 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

Research described in this paper was financed by the National Sustainability Program under Grant LO1401 and by the Czech Science Foundation under Grant No. P102-15-21942S. For the research, infrastructure of the SIX Center was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Khateb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khateb, F., Kumngern, M. & Kulej, T. 1-V Inverting and Non-inverting Loser-Take-All Circuit and Its Applications. Circuits Syst Signal Process 35, 1507–1529 (2016). https://doi.org/10.1007/s00034-015-0130-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0130-5

Keywords

Navigation