Skip to main content
Log in

A New Active Contour Model Based on Distance-Weighted Potential Field

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Snakes, or active contours, have been widely used in various image processing applications. Typical problems of snakes, including limited capture range, poor convergence to concavities, noise sensitivity, and initialization sensitivity, have limited their applications. For solving these problems, we propose a new potential for the active contour model. In this proposed potential field, each location’s potential is computed by integrating the feature information from all the pixels in the image with the distances as the weights. The external forces are computed as the gradients of this proposed potential field, and the computed external forces are static and have global capture range. Experiments and also the comparisons with the snake using gradient vector flow (GVF) as external forces are conducted to examine the performances of this proposed snake. The results show that the proposed snake has a large capture range and an excellent convergence to boundary concavities, and also the proposed snake is more robust to noise, more time efficient, and less sensitive to the initialization, compared with the GVF snake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.J. Abrantes, J.S. Marques, A class of constraint clustering algorithms for object boundary extraction. IEEE Trans. Image Process. 5(11), 1507–1521 (1996)

    Article  Google Scholar 

  2. P. Bamford, B. Lovell, Unsupervised cell nucleus segmentation with active contours. Signal Process. 71(2), 203–213 (1998)

    Article  MATH  Google Scholar 

  3. P. Brigger, J. Hoeg, M. Unser, B-spline snakes: a flexible tool for parametric contour detection. IEEE Trans. Image Process. 9(9), 1484–1496 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, Proc. of 5th International Conference on Computer Vision, pp. 694–699 (1995)

  5. V. Caselles, F. Catte, T. Coll, F. Dibos, A geometric model for active contours in image processing. Numer. Math. 66(1), 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Chakraborty, L.H. Staib, J.S. Duncan, Deformable boundary finding in medical images by integrating gradient and region information. IEEE Trans. Med. Imaging 15(6), 859–870 (1996)

    Article  Google Scholar 

  7. Q. Chen, Q.-S. Sun, P.A. Heng, D.-S. Xia, Two-stage object tracking method based on kernel and active contour. IEEE Trans. Circuits Syst. Video Technol. 20(4), 605–609 (2010)

    Article  Google Scholar 

  8. L.D. Cohen, On active contour models and balloons. CVGIP Image Underst. 53(2), 211–218 (1991)

    Article  MATH  Google Scholar 

  9. L.D. Cohen, I. Cohen, Finite-element method for active contour models and balloon for 2-D and 3-D images. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1131–1147 (1993)

    Article  Google Scholar 

  10. C. Davatzikos, J.L. Prince, An active contour model for mapping the cortex. IEEE Trans. Med. Imaging 14(1), 65–80 (1995)

    Article  Google Scholar 

  11. F. Derraz, A. Taleb-Ahmed, L. Peyrodie, A. Pinti, A. Chikh, F. Bereksi-Reguig, Active contours based Battachryya gradient flow for texture segmentation, in Proceedings of International Congress on Image ans Signal Processing, pp. 1–6 (2009)

  12. P. Duhamel, M. Vetterli, Fast Fourier transforms: a tutorial review and a state of the art. Signal Process. 16, 259–299 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. M.S. Horritt, A statistical active contour model for SAR image segmentation. Image Vis. Comput. 17(3–4), 213–224 (1999)

    Article  Google Scholar 

  14. A. Jalba, M. Wilkinson, J. Roerdink, CPM: A deformable model for shape recovery and segmentation based on charged particles. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1320–1335 (2004)

    Article  Google Scholar 

  15. M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models. Int. J. Comput. Vision 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  16. A. Kovacs, T. Sziranyi, Harris function based active contour external force for image segmentation. Pattern Recogn. Lett. 33(9), 1180–1187 (2012)

    Article  Google Scholar 

  17. B. Li, S.T. Acton, Active contour external force using vector field convolution for image segmentation. IEEE Trans. Image Process. 16(8), 2096–2106 (2007)

    Article  MathSciNet  Google Scholar 

  18. F. Liu, B. Zhao, P.K. Kijewski, L. Wang, L.H. Schwartz, Liver segmentation for CT images using GVF snake. Med. Phys. 32(12), 3699 (2005)

    Article  Google Scholar 

  19. D. Lui, C. Scharfenberger, K. Fergani, A. Wong, D. Clausi, Enhanced decoupled active contour using structural and textural variation energy functionals. IEEE Trans. Image Process. 23(2), 855–869 (2014)

    Article  MathSciNet  Google Scholar 

  20. R. Malladi, J.A. Sethian, B.C. Vemuri, Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)

    Article  Google Scholar 

  21. T. McInerney, D. Terzopoulos, A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. Comput. Med. Imaging Graph. 19(1), 69–83 (1995)

    Article  Google Scholar 

  22. S. Menet, P. Saint-Marc, G. Medioni, B-snakes: implementation and application to stereo, in Proceedings of DARPA Image Understanding Workshop, pp. 720–726 (1990)

  23. O. Michailovich, Y. Rathi, A. Tannenbaum, Image segmentation using active contours driven by the Bhattacharyya gradient flow. IEEE Trans. Image Process. 16(11), 2787–2801 (2007)

    Article  MathSciNet  Google Scholar 

  24. A. Mishra, P. Fieguth, D. Clausi, Decoupled active contour (DAC) for boundary detection. IEEE Trans. Pattern Anal. Mach. Intell. 33(20), 310–324 (2011)

    Article  Google Scholar 

  25. N. Ray, S.T. Acton, K. Ley, Tracing leukocytes in vivo with shape and size constrained active contours. IEEE Trans. Med. Imaging 21(10), 1222–1235 (2002)

    Article  Google Scholar 

  26. N. Ray, S.T. Acton, Motion gradient vector flow: an external force for tracking rolling leukocytes with shape and size constrained active contours. IEEE Trans. Med. Imaging 23(12), 1466–1478 (2004)

    Article  Google Scholar 

  27. C. Sagiv, N. Sochen, Y. Zeevi, Integrated active contours for texture segmentation. IEEE Trans. Image Process. 1(1), 1–19 (2006)

    MathSciNet  Google Scholar 

  28. A. Sebri, J. Malek, R. Tourki, Automated breast cancer diagnosis based on GVF snake segmentation, wavelet features extraction and neural network classification. J. Comput. Sci. 3(8), 600–607 (2007)

    Article  Google Scholar 

  29. J.A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  30. F. Shih, K. Zhang, Locating object contours in complex background using improved snakes. Comput. Vis. Graph. Image Underst. 105(2), 93–98 (2007)

    Article  MathSciNet  Google Scholar 

  31. L.H. Staib, J.S. Duncan, Boundary finding with parametrically deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 14(11), 1061–1075 (1992)

    Article  Google Scholar 

  32. J. Tang, A multi-direction GVF snake for the segmentation of skin cancer images. Pattern Recogn. 42(6), 1172–1179 (2009)

    Article  Google Scholar 

  33. D. Terzopoulos, A. Witkin, M. Kass, Constraints on deformable models: recovering 3D shape and nonrigid motion. Artif. Intell. 36, 91–123 (1988)

    Article  MATH  Google Scholar 

  34. C. Vieren, F. Cabestaing, J.-G. Postaire, Catching moving objects with snakes for motion tracking. Pattern Recogn. Lett. 16(7), 679–685 (1995)

    Article  Google Scholar 

  35. K. Wang, H. Xie, Texture image segmentation using fully global minimization active contour model, in Proceedings of International Conference on Multidedia Technology, pp. 2649–2653 (2011)

  36. B. Wang, L. M. Zhang, A new snake model based on the Coulomb law, in Proceedings of IEEE International Conference Neural Networks and Signal Processing, pp. 1113–1116 (2003)

  37. X. Xie, M. Mirmehdi, MAC: Magnetostatic active contour model. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 632–646 (2008)

    Article  Google Scholar 

  38. C. Xu, J.L. Prince, Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. C. Xu, J.L. Prince, Generalized gradient vector flow external forces for active contours. Signal Process. 71(2), 131–139 (1998)

    Article  MATH  Google Scholar 

  40. X. Zhou, P. Wang, C. Wang, Y. Ye, GVF snake based target contour extraction in SAR imagery, in Proceedings of 2013 Seventh International Conference on Image and Graphics, pp. 192–195 (2013)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants 61102138 and by Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Wang, P., Ju, Y. et al. A New Active Contour Model Based on Distance-Weighted Potential Field. Circuits Syst Signal Process 35, 1729–1750 (2016). https://doi.org/10.1007/s00034-015-0143-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0143-0

Keywords

Navigation