Skip to main content

Advertisement

Log in

Underdetermined BSS Based on K-means and AP Clustering

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Underdetermined blind source separation (UBSS) is a hard problem to solve since its mixing system is not invertible. The well-known “two-step approach” has been widely used to solve the UBSS problem and the most pivotal step is to estimate the underdetermined mixing matrix. To improve the estimation performance, this paper proposes a new clustering method. Firstly, the observed signals in the time domain are transformed into sparse signals in the frequency domain; furthermore, the linearity clustering of sparse signals is translated into compact clustering by normalizing the observed data. And then, the underdetermined mixing matrix is estimated by clustering methods. The K-means algorithm is one of the classical methods to estimate the mixing matrix but it can only be applied to know the number of clusters in advance. This is not in accord with the actual situation of UBSS. In addition, the K-means is very sensitive to the initialization of clusters and it selects the initial cluster centers randomly. To overcome the fatal flaws, this paper employs affinity propagation (AP) clustering to get the exact number of exemplars and the initial clusters. Based on those results, the K-means with AP clustering as initialization is used to precisely estimate the underdetermined mixing matrix. Finally, the source signals are separated by linear programming. The experimental results show that the proposed method can effectively estimate the mixing matrix and is more suitable for the actual situation of UBSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Adalı, C. Jutten, A. Yeredor, A. Cichocki, E. Moreau, Source separation and applications. IEEE Signal Process. Mag. 31(3), 16–17 (2014)

    Article  Google Scholar 

  2. H. Akaike, A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Arberet, R. Gribonval, F. Bimbot, A robust method to count and locate audio sources in a multichannel underdetermined mixture. IEEE Trans. Signal Process. 58(1), 121–133 (2010)

    Article  MathSciNet  Google Scholar 

  4. P. Bofill, M. Zibulevsky, Underdetermined blind source separation using sparse representations. Sig. Process. 81, 2353–2362 (2001)

    Article  MATH  Google Scholar 

  5. H. Bozdogan, Mixture-model cluster analysis using model selection criteria and a new information measure of complexity. in Proceedings of the 1st US/Japan Conference on the Frontiers of Statistical Modeling: An Informational Approach (Dordrecht: Kluwer Academic Publishers, 1994), pp. 69–113

  6. H. Bozdogan, Akaike’s information criterion and recent developments in model complexity. J. Math. Psychol. 44, 62–91 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Comon, C. Jutten, Handbook of Blind Source Separation: Independent Component Analysis and Applications (Academic Press, Oxford, 2010)

    Google Scholar 

  8. J. Deller, J. Hansen, J. Proakis, Discrete-Time Processing of Speech Signals (IEEE Press, Piscataway, NJ, 2000)

    Google Scholar 

  9. M. Elad, Sparse and Redundant Representations: From Theory to Applications in signal and image processing (Springer, New York, 2010)

    Book  MATH  Google Scholar 

  10. J. Eric Ward, A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools. Ecol. Model. 211, 1–10 (2008)

    Article  Google Scholar 

  11. G. Fanglin, H. Zhang, D. Zhu, Blind separation of non-stationary sources using continuous density hidden Markov models. Digit. Signal Process. 23(5), 1549–1564 (2013)

    Article  MathSciNet  Google Scholar 

  12. B.J. Frey, Clustering by passing messages between data points. Science 315, 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Guo, S. Huang, Y. Li, G.R. Naik, Edge effect elimination in single-mixture blind source separation. Circuit. Syst. Signal Process. 32(5), 2317–2334 (2013)

    Article  MathSciNet  Google Scholar 

  14. X. He, F. Wang, W. Chai, W. Liangmin, Ant colony clustering algorithm for underdetermined BSS. Chin. J. Electron. 22(2), 319–324 (2013)

    Google Scholar 

  15. http://en.wikipedia.org/wiki/Hann_function

  16. R.A. Hummel, M.S. Landy, A statistical viewpoint on the theory of evidence. IEEE Trans. Pattern Anal. Mach. Intell. 10(2), 235–247 (1988)

    Article  MATH  Google Scholar 

  17. R. Kass, Bayes factors in practice. J. R. Stat. Soc. Ser. D (Statistician) 42, 551–560 (1993)

    Google Scholar 

  18. R. Kass, A.E. Raftery, Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Kawamura, E. Nada, Y. Iiguni, Single channel blind source separation of deterministic sinusoidal signals with independent component analysis. IEICE Commun. Express 2(3), 104–110 (2013)

    Article  Google Scholar 

  20. LDS, Application Note AN014 on Understanding FFT Windows, http://www.physik.uni-wuerzburg.de

  21. Y. Li, A. Cichocki, S.-I. Amari, Analysis of sparse representation and blind source separation. Neural Comput. 16(6), 1193–1234 (2004)

    Article  MATH  Google Scholar 

  22. Y. Li, S.-I. Amari, A. Cichocki, D.W.C. Ho, S. Xie, Underdetermined blind source separation based on sparse representation. IEEE Trans. Signal Process. 54(2), 423–437 (2006)

    Article  Google Scholar 

  23. A. Lombard, Y. Zheng, H. Buchner, W. Kellermann, TDOA estimation for multiple sound sources in noisy and reverberant environments using broadband independent component analysis. IEEE Trans. Audio Speech Lang. Process. 19(6), 1490–1503 (2011)

    Article  Google Scholar 

  24. P. Mowlaee, R. Saeidi, M.G. Christensen, Z.-H. Tan, T. Kinnunen, P. Fränti, S. Holdt, A joint approach for single-channel speaker identification and speech separation. IEEE Trans. Audio Speech Lang. Process. 20(9), 2586–2601 (2012)

    Article  Google Scholar 

  25. G.R. Naik, D. Kant Kumar, Determining number of independent sources in undercomplete mixture. EURASIP J. Adv. Signal Process. 2009, 1–5 (2009)

    Article  Google Scholar 

  26. G.R. Naik, D. Kant Kumar, An overview of independent component analysis and its applications. Inform. Int. J. Comput. Inform. 35, 63–81 (2011)

    MATH  Google Scholar 

  27. G.R. Naik, D. Kant Kumar, Dimensional reduction using blind source separation for identifying sources. Int. J. Innov. Comput. Inform. Control 7(2), 989–1000 (2011)

    Google Scholar 

  28. F. Nesta, M. Omologo, Convolutive Underdetermined Source Separation Through Weighted Interleaved ICA and Spatio- Temporal Source Correlation. Latent Variable Analysis and Signal Separation (Springer, Berlin, 2012), pp. 222–230

  29. J. Nikunen, T. Virtanen, Direction of arrival based spatial covariance model for blind sound source separation. IEEE/ACM Trans. Audio Speech Lang. Process. 22(3), 727–739 (2014)

    Article  Google Scholar 

  30. T. Otsuka, K. Ishiguro, H. Sawada, H.G. Okuno, Bayesian nonparametrics for microphone array processing. IEEE/ACM Trans. Audio Speech Lang. Process. 22(2), 493–504 (2014)

    Article  Google Scholar 

  31. R. Rubinstein, A.M. Bruckstein, M. Elad, Dictionaries for sparse representation modeling. Proc. IEEE 98(6), 1045–1057 (2010)

    Article  Google Scholar 

  32. X. Rui, D.C. Wunsch II, Clustering (IEEE Press and Wiley, New Jersey, 2009)

    Google Scholar 

  33. V. Saeed, Vaseghi, Advanced Digital Signal Processing and Noise Reduction, 4th edn. (Wiley, Chichester, 2008)

    Google Scholar 

  34. H. Sawada, S. Araki, S. Makino, Underdetermined convolutive blind source separation via frequency bin-wise clustering and permutation alignment. IEEE Trans. Audio Speech Lang. Process. 19(3), 516–527 (2011)

    Article  Google Scholar 

  35. G. Schwarz, Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Smyth, Clustering using Monte Carlo cross-validation. in Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (New York, NY: AAAI Press, 1996), pp. 126–133

  37. M. Souden, K. Kinoshita, M. Delcroix, T. Nakatani, Location feature integration for clustering-based speech separation in distributed microphone arrays. IEEE/ACM Trans. Audio Speech Lang. Process. 22(2), 354–367 (2014)

    Article  Google Scholar 

  38. D.J. Spiegelhalter, N.G. Best, B.P. Carlin, A. van der Linde, Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 64(4), 583–639 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. B. Tan, S. Xie, Underdetermined blind separation based on source signals’ number estimation. J. Electron. Inf. Technol. 30(4), 863–867 (2008)

    Google Scholar 

  40. N. Tengtrairat, Bin Gao, W. L. Woo, S. S. Dlay, Single-channel blind separation using pseudo-stereo mixture and complex 2-D histogram. IEEE Trans. Neural Netw. Learn. Syst. 24(11), 1722-1735 (2013)

  41. F.J. Theis, C.G. Puntonet, E.W. Lang, Median-based clustering for underdetermined blind signal processing. IEEE Signal Process. Lett. 13(2), 96–99 (2006)

    Article  Google Scholar 

  42. E. Vincent, R. Gribonval, C. Févotte, Performance measurement in blind audio source separation. IEEE Trans. Audio Speech Lang. Process. 14(4), 1462–1469 (2006)

    Article  Google Scholar 

  43. E. Vincent, N. Bertin, R. Gribonval, F. Bimbot, From blind to guided audio source separation. IEEE Signal Process. Mag. 31(3), 107–115 (2014)

    Article  Google Scholar 

  44. J. Wen, H. Liu, S. Zhang, M. Xiao, A new fuzzy K-EVD orthogonal complement space clustering method. Neural Comput. Appl. 24(1), 147–154 (2014)

    Article  Google Scholar 

  45. J. Wright, Y. Ma, J. Mairal, G. Sapiro, T.S. Huang, S. Yan, Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)

    Article  Google Scholar 

  46. J.-J. Yang, H.-L. Liu, Blind identification of the underdetermined mixing matrix based on K-weighted hyperline clustering. Neurocomputing 149, 483–489 (2015)

    Article  Google Scholar 

  47. M. Zibulevsky, M. Elad, \(L_{1}-L_{2}\) optimization in signal and image processing. IEEE Signal Process. Mag. 27, 76–88 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this work was supported by the National Natural Science Foundation of China [No. 60572183] and the Research Projects of the Open Fund Project of Key Laboratory in Hunan Universities [No. 14K022].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan-sen He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Xs., He, F. & Cai, Wh. Underdetermined BSS Based on K-means and AP Clustering. Circuits Syst Signal Process 35, 2881–2913 (2016). https://doi.org/10.1007/s00034-015-0173-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0173-7

Keywords

Navigation