Skip to main content
Log in

Fractional Order Oscillator Design Based on Two-Port Network

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a general analysis of the generation for all possible fractional order oscillators based on two-port network is presented. Three different two-port network classifications are used with three external single impedances, where two are fractional order capacitors and a resistor. Three possible impedance combinations for each classification are investigated, which give nine possible oscillators. The characteristic equation, oscillation frequency and condition for each presented topology are derived in terms of the transmission matrix elements and the fractional order parameters \(\alpha \) and \(\beta \). Mapping between some cases is also illustrated based on similarity in the characteristic equation. The use of fractional order elements \(\alpha \) and \(\beta \) adds extra degrees of freedom, which increases the design flexibility and frequency band, and provides extra constraints on the phase difference. Study of four different active elements, such as voltage-controlled current source, gyrator, op-amp-based network, and second-generation current-conveyor-based network, serve as a two-port network is presented. The general analytical formulas of the oscillation frequency and condition as well as the phase difference between the two oscillatory outputs are derived and summarized in tables for each designed oscillator network. A comparison between fractional order oscillators with their integer order counterparts is also illustrated where some designs cannot work in the integer case. Numerical Spice simulations and experimental results are given to validate the presented analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. G.C. Alexander, M. Sadiku, Fundamentals of Electric Circuits (McGraw-Hill International Edition, Singapore, 2000)

    Google Scholar 

  2. G.E. Carlson, C.A. Halijak, Approximation of fractional capacitors (1/s)1/n by a regular Newton process. IEEE Trans. Circ. Theor. CT–11(2), 210–213 (1964)

    Article  Google Scholar 

  3. H. Chen, Robust stabilization for a class of dynamic feedback uncertain nonholonomic mobile robots with input saturation. Int. J. Control Autom. Syst. 12(6), 1216–1224 (2014)

    Article  Google Scholar 

  4. A. Dumlu, K. Erenturk, Trajectory tracking control for a 3-DOF parallel manipulator using fractional-order control. IEEE Trans. Ind. Electron. 61(7), 3417–3426 (2014)

    Article  Google Scholar 

  5. A.M. Elshurafa, M.N. Almadhoun, K.N. Salama, H.N. Alshareef, Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites. Appl. Phys. Lett. 102(23), 232901 (2013)

    Article  Google Scholar 

  6. A.S. Elwakil, Design of non-balanced cross-coupled oscillators with no matching requirements. IET Circ. Devices Sys. 4(5), 365–373 (2010)

    Article  Google Scholar 

  7. A.S. Elwakil, M.A. Al-Radhawi, All possible second-order four-impedance two-stage Colpitts oscillators. IET Circ. Devices Sys. 5, 196–202 (2011)

    Article  Google Scholar 

  8. A.S. Elwakil, On the two-port network classification of Colpitts oscillators. IET Circ. Devices Sys. 3, 223–232 (2009)

    Article  Google Scholar 

  9. A.S. Elwakil, B.J. Maundy, Single transistor active filters: What is possible and what is not. Mathemat. IEEE Trans. Circ. Syst. 61(9), 2517–2524 (2014)

    Google Scholar 

  10. M. Faryad, Q.A. Naqvi, Fractional rectangular waveguide. Prog. Electromagn. Res. 75, 384–396 (2007)

    Article  Google Scholar 

  11. R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional irder, in Fractal and Fractional Calculus in Continuum Mechanics (Springer, Berlin, 1997)

  12. L.J. Guo, Chaotic dynamics and synchronization of fractional-order Genesio–Tesi systems. Chinese Phys. 14(8), 1517–1521 (2005)

    Article  Google Scholar 

  13. T. Haba, G. Ablart, T. Camps, F. Olivie, Influence of the electrical parameters on the input impedance of a fractal structure realised on silicon. Chaos Solitons Fractals 24(2), 479–490 (2005)

    Article  Google Scholar 

  14. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific Publishers, Singapore, 2000)

    Book  MATH  Google Scholar 

  15. I.S. Jesus, T.J.A. Machado, B.J. Cunha, Fractional electrical impedances in botanical elements. J. Vib. Control 14(9), 1389–1402 (2008)

    Article  MATH  Google Scholar 

  16. J. Kim, W.-S. Ohm, N.-C. Park,Two-Port Network Model of Fluid-Loaded SAW Delay-Line Sensors. ASME (2011)

  17. M.N. Kuperman, D.H. Zanette, Synchronization of multi-phase oscillators: an Axelrod-inspired model. Eur. Phys. J. B 70(2), 243–248 (2009)

    Article  Google Scholar 

  18. H. Li, Y. Luo, Y.Q. Chen, A fractional-order proportional and derivative (FOPD) motion controller: tuning rule and experiments. IEEE Trans. Control Syst. Tech. 18(2), 516–520 (2010)

    Article  Google Scholar 

  19. C. Ma, Y. Hori, Backlash vibration suppression control of torsional system by novel fractional order P \(ID^{\text{ k }}\) controller. IEEJ Trans. Ind. Applicat. 124–D(3), 312–317 (2004)

    Article  Google Scholar 

  20. J.J. Meng, J.T. Yun, Application of two-port network in Bilateral control for a Haptic interface with force-position compensation. Adv. Mater. Res. 199–200, 1211–1216 (2011)

    Article  Google Scholar 

  21. F. Miguel, M. Lima, J. Machado, M. Crisostomo, Experimental signal analysis of robot impacts in a fractional calculus perspective. J. Adv. Comput. Intell. Intell. Inf 11(9), 1079–1085 (2007)

    Google Scholar 

  22. K.S. Miller, Derivatives of noninteger order. Mathemat. Mag. 68(3), 183–192 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Moaddy, A.G. Radwan, K.N. Salama, S. Momani, I. Hashim, The fractional-order modeling and synchronization of electrically coupled neurons system. Comput. Math. Appl. 34(10), 3329–3339 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Nakagava, K. Sorimachi, Basic characteristics of a fractance device. IEICE Trans. Fund. Electr. E75–A(12), 1814–1818 (1992)

    Google Scholar 

  25. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  26. A.G. Radwan, A. Shamim, K.N. Salama, Theory of fractional order elements based impedance matching networks. IEEE Microw. Wireless Comp. Lett. 21(3), 120–122 (2011)

    Article  Google Scholar 

  27. A.G. Radwan, A.M. Soliman, A.S. Elwakil, Design equations for fractional-order sinusoidal oscillators: four practical circuits examples. Int. J. Circ. Theor. Appl. 36(4), 473–492 (2008)

    Article  MATH  Google Scholar 

  28. A.G. Radwan, A.S. Elwakil, A.M. Soliman, Fractional-order sinusoidal oscillators: design procedure and practical examples. IEEE Trans. Circ. Syst. I 55(7), 2051–2063 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. A.G. Radwan, K.N. Salama, Passive and active elements using fractional \(L_{\beta } C_{\alpha }\) circuit. IEEE Trans. Circ. Syst. 58, 2388–2397 (2011)

    Article  MathSciNet  Google Scholar 

  30. A.G. Radwan, A.M. Soliman, A.S. Elwakil, A. Sedeek, On the stability of linear systems with fractional-order elements. Chaos Solitons Fractals 40, 2317–2328 (2009)

    Article  MATH  Google Scholar 

  31. R.S. Raven, Requirements on master oscillators for coherent radar. Proc. IEEE 54(2), 237–243 (1966)

    Article  Google Scholar 

  32. B. Ross, Fractional calculus. Mathemat. Mag. 50(3), 115–122 (1977)

    Article  MATH  Google Scholar 

  33. K.N. Salama, A.M. Soliman, Novel oscillators using the operational transresistance amplifier. Microelectr. J 31, 39–47 (2000)

    Article  Google Scholar 

  34. A.M. Soliman, Two integrator loop quadrature oscillators: a review. J. Adv. Res. 4(1), 1–11 (2013)

    Article  Google Scholar 

  35. A.M. Soliman, Applications of current feedback operational amplifiers. Analog Integr. Circ. Signal Process. 11, 265–302 (1996)

    Article  Google Scholar 

  36. K.R. Sturley, in Radio Receiver Design (Chapman and hall, London, 1943)

  37. M. Sugi, Y. Hirano, Y.F. Miura, K. Saito, Simulation of fractal immittance by analog circuits: an approach to the optimized circuits. Commun. Comput. Sci E82–A(8), 1627–1635 (1999)

    Google Scholar 

  38. M.C. Tsai, D.W. Gu, Robust and Optimal Control: A Two-Port Framework Approach, Advances in Industrial Control (Springer, London, 2014)

    Book  MATH  Google Scholar 

  39. J. Williams, Practical circuitry for measurement and control problems. Linear Tech. Corp. AN 61, 1–40 (1994)

    Google Scholar 

  40. Y. Xu, A. Srivastava, in A Two Port Network Model of CNT-FET for RF Characterization, MWCAS (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed G. Radwan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, L.A., Radwan, A.G., Madian, A.H. et al. Fractional Order Oscillator Design Based on Two-Port Network. Circuits Syst Signal Process 35, 3086–3112 (2016). https://doi.org/10.1007/s00034-015-0200-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0200-8

Keywords

Navigation