Skip to main content
Log in

Two Effective Strategies for Complex Domain Compressive Sensing

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose two novel recovery schemes for complex domain compressive sensing. Firstly, we present a new strategy to separate the real and imaginary parts of a complex signal for \(\ell _{1}\) minimization. While the method is simple, simulation results show that it is quite efficient because it reduces the sampling rate. Secondly, the least squares (LS) sub-problem is a key part of the orthogonal matching pursuit (OMP) algorithm and accounts for a large part of the computational load. We employ the Landweber algorithm to efficiently solve the LS problem. Furthermore, we propose four new parameter options to accelerate the convergence. Our numerical experiments show that our method is competitive with the pseudo-inverse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Baraniuk, P. Steeghs, Compressive radar imaging. in IEEE Radar Conference (Waltham, Massachusetts, April 2007), pp. 128–133

  2. S. Boyd, L. Vandenberghe, Convex Optimization (Cambrige University, Cambrige, 2004)

    Book  MATH  Google Scholar 

  3. C. Byrne, Iterative Algorithms in Inverse Problems (University of Massachusetts Lowell Libraries, Lowell, 2006)

    Google Scholar 

  4. E.J. Candès, \(\ell _{1}\)-MAGIC: recovery of sparse signals via convex programming. (2004) http://www-stat.stanford.edu/~candes/l1magic/

  5. E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory. 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. E.J. Candès, T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory. 51(12), 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. E.J. Candès, T. Tao, Near optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory. 51(12), 5406–5425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. W.L. Chan, M.L. Moravec, R.G. Baraniuk, D.M. Mittleman, Terahertz imaging with compressed sensing and phase retrieval. Opt. Lett. 33(9), 974–976 (2008)

    Article  Google Scholar 

  9. G. Coluccia, E. Magli, A novel progressive image scanning and reconstruction scheme based on compressed sensing and linear prediction. in IEEE International Conference on Multimedia and Expo (ICME) (Melbourne, Australia, July 2012), pp. 866–871

  10. I. Cumming, F. Wong, Digital Processing of Synthetic Aperture Radar Data (Artech House, Norwood, 2005)

    Google Scholar 

  11. L. Dai, Z. Wang, Z. Yang, Compressive sensing based time domain synchronous OFDM transmission for vehicular communications. IEEE J. Sel. Area Commun. 31(9), 460–469 (2013)

    Article  Google Scholar 

  12. S. Das, T. Sidhu, Application of compressive sampling in synchrophasor data communication in WAMS. IEEE Trans Ind. Informat. 10(1), 450–460 (2014)

    Article  Google Scholar 

  13. J. Ding, L. Chen, Y. Gu, Perturbation analysis of orthogonal matching pursuit. IEEE Trans. Signal Process. 61(2), 398–410 (2013)

    Article  MathSciNet  Google Scholar 

  14. D. Donoho, Compressed sensing. IEEE Trans. Inf. Theory. 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Fang, S. Li, R.P. Mcnabb, Q. Nie, A.N. Kuo, C.A. Toth, J.A. Izatt, S. Farsiu, Fast acquisition and reconstruction of optical coherence tomography images via sparse representation. IEEE Trans. Med. Imag. 32(11), 2034–2049 (2013)

    Article  Google Scholar 

  16. S. Foucart, H. Rauhut, in A Mathematical Introduction to Compressive Sensing (Birkhäuser, Boston, 2013)

  17. T. Glodstein, S. Osher, The split Bregman method for \(L_{1}\)-regularized problem. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  Google Scholar 

  18. D. Gross, Y.K. Liu, S.T. Flammia, S. Becker, J. Eisert, Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105(15) (2010) arXiv:0909.3304

  19. M. Hayes, P. Gough, Synthetic aperture sonar: a review of current status. IEEE J. Ocean. Eng. 34(3), 207–224 (2009)

    Article  Google Scholar 

  20. H. Liu, B. Song, H. Qin, Z. Qiu, Dictionary learning based reconstruction for distributed compressed video sensing. J. Vis. Commun. Image. R. 24(8), 1232–1242 (2013)

    Article  Google Scholar 

  21. C. Luo, M.A. Borkar, A.J. Redfern, J.H. Mcclellan, Compressive sensing for sparse touch detection on capacitive touch screens. IEEE J. Emerg. Sel. Top. Circ. Syst. 2(3), 639–648 (2012)

    Article  Google Scholar 

  22. M. Lustic, D.L. Donoho, Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  23. E. Magesan, A. Cooper, P. Cappellaro, Compressing measurements in quantum dynamic parameter estimation. (2013) arXiv:1308.0313v1

  24. E. Matusiak, Y.C. Eldar, Sub-Nyquist sampling of short pulses. IEEE Trans. Signal Process. 60(3), 3944–3947 (2012)

    Article  MathSciNet  Google Scholar 

  25. D. Mittleman, Sensing with Terahertz Radiation (Springer, Berlin, 2003)

    Book  Google Scholar 

  26. N. Parikh, S. Boyd, Proximal algorithms. Found. Trends Optim. 1(3), 123–231 (2013)

    Google Scholar 

  27. L. Poli, G. Oliveri, P. Rocca, A. Massa, Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illumination. IEEE Trans. Geosci. Remote Sens. 51(5), 2920–2936 (2013)

    Article  Google Scholar 

  28. L. Poli, G. Oliveri, F. Viani, A. Massa, MT-BCS-based microwave imaging approach through minimum-norm current expansion. IEEE Trans. Antennas Propag. 61(9), 4722–4732 (2013)

    Article  MathSciNet  Google Scholar 

  29. G.R. Qu, C. Wang, M. Jiang, Necessary and sufficient convergence conditions for algebraic image reconstruction algorithms. IEEE Trans. Image Process. 18(2), 435–440 (2009)

    Article  MathSciNet  Google Scholar 

  30. M. Rossi, A.M. Haimovich, Y.C. Eldar, Spatial compressive sensing for MIMO radar. IEEE Trans. Signal Process. 62(2), 419–430 (2013)

    Article  MathSciNet  Google Scholar 

  31. M. Rudelson, R. Vershynin, Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements. in Proceedings of the 40th Annual Conference Information Sciences and Systems (CISS) (Princeton, March 2006), pp. 207–212

  32. J. Tropp, A. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory. 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Webb, Magnetic resonance imaging. in Introduction to Biomedical Imaging (Wiley-Interscience, Hoboken, 2003), pp. 157–219

  34. S.J. Wright, Primal-Dual Interior-Point Methods (SIAM, Philadelphia, 1997)

    Book  MATH  Google Scholar 

  35. J. Yang, J. Thompson, X. Huang, T. Jin, Z. Zhou, Random-frequency SAR imaging based on compressed sensing. IEEE Trans. Geosci. Remote Sens. 51(2), 983–994 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangrong Qu.

Additional information

Partially supported by the National Natural Science Foundation of China (61071144; 61271012).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, R., Qu, G. & Wang, B. Two Effective Strategies for Complex Domain Compressive Sensing. Circuits Syst Signal Process 35, 3380–3392 (2016). https://doi.org/10.1007/s00034-015-0202-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0202-6

Keywords

Navigation