Skip to main content
Log in

Fault Detection Filtering for Uncertain Itô Stochastic Fuzzy Systems With Time-Varying Delays

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper considers the problem of robust \(H_{\infty }\) fault detection for a class of Itô stochastic Takagi–Sugeno fuzzy systems with time-varying delays and parameter uncertainties. The purpose is to design fuzzy-rule-independent and fuzzy-rule-dependent fault detection filters, which guarantee the fault detection system is not only mean square asymptotically stable, but also satisfies a prescribed \(H_{\infty }\)-norm level for all admissible uncertainties. Via the application of Lyapunov stability theory and the linear matrix inequality technique, novel delay-dependent solvability conditions are obtained. Weighting fault signal approach is utilized to improve the performance of the fault detection system, and explicit expression of the desired filter parameters is characterized by congruence transformation, matrix decomposition, and convex optimization technique. A numerical example and a mass-spring-damper mechanical system are employed to illustrate the usefulness and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Bai, Z. Tian, S. Shi, Design of \(H_{\infty }\) robust fault detection filter for linear uncertain time-delay systems. ISA Trans. 45(4), 491–502 (2006)

    Article  Google Scholar 

  2. M. Bouattour, M. Chadli, M. Chaabane, A.E. Hajjaji, Design of robust fault detection observer for Takagi–Sugeno models using the descriptor approach. Int. J. Control Autom. Syst. 9(5), 973–979 (2011)

    Article  Google Scholar 

  3. Y.Y. Cao, Z. Lin, Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation. IEEE Trans. Fuzzy Syst. 11(1), 57–67 (2003)

    Article  Google Scholar 

  4. J. Chen, R.J. Patton, Robust model-based fault diagnosis for dynamic systems (Springer, New York, 1999)

    Book  MATH  Google Scholar 

  5. H. Dong, Z. Wang, H. Gao, Fault detection for Markovian jump systems with sensor saturations and randomly varying nonlinearities. IEEE Trans. Circuits Syst. Regul. Pap. 59(10), 2354–2362 (2012)

    Article  MathSciNet  Google Scholar 

  6. H. Dong, Z. Wang, H. Gao, Distributed \(H_{\infty }\) filtering for a class of Markovian jump nonlinear time-delay systems over lossy sensor networks. IEEE Trans. Ind. Electron. 60(10), 4665–4672 (2013)

    Article  Google Scholar 

  7. G. Feng, A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)

    Article  Google Scholar 

  8. H. Gao, T. Chen, L. Wang, Robust fault detection with missing measurements. Int. J. Control 81, 804–819 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Gao, Y. Zhao, J. Lam, K. Chen, \(H_{\infty }\) Fuzzy filtering of nonlinear systems with intermittent measurements. IEEE Trans. Fuzzy Syst. 17(2), 291–300 (2009)

    Article  Google Scholar 

  10. X. Guan, C.L. Chen, Delay-dependent guaranteed cost control for T–S fuzzy systems with time delays. IEEE Trans. Fuzzy Syst. 12(2), 236–249 (2004)

    Article  MATH  Google Scholar 

  11. X. He, Z. Wang, D. Zou, Networked fault detection with random communication delays and packet losses. Int. J. Syst. Sci. 39, 1045–1054 (2008)

    Article  MATH  Google Scholar 

  12. H. Huang, D.W.C. Ho, Delay-dependent robust control of uncertain stochastic fuzzy systems with time-varying delay. IET Control Theory Appl. 1(4), 1075–1085 (2007)

    Article  MathSciNet  Google Scholar 

  13. I. Hwang, S. Kim, Y. Kim, C.E. Seah, A survey of fault detection, isolation, and reconfiguration methods. IEEE Trans. Control Syst. Technol. 18, 636–653 (2010)

    Article  Google Scholar 

  14. B. Jiang, M. Staroswiecki, V. Cocquempot, \(H_{\infty }\) fault detection filter design for linear discrete-time systems with multiple time delays. Int. J. Syst. Sci. 34(5), 365–373 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Jin, R. Li, Z. Xu, X. Zhao, Reliable fault diagnosis method using ensemble fuzzy ARTMAP based on improved bayesian belief method. Neurocomputing 133(10), 309–316 (2014)

    Article  Google Scholar 

  16. J. Lam, S. Zhou, Dynamic output feedback \(H_{\infty }\) control of discrete-time fuzzy systems: a fuzzy-basis-dependent Lyapunov function approach. Int. J. Syst. Sci. 38(1), 25–37 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Lin, Q. Wang, T.H. Lee, Y. He, LMI Approach to Analysis and Control of Takagi–Sugeno Fuzzy Systems With Time Delay (Lecture Notes in Control and Information Sciences) (Springer, New York, 2007)

    Google Scholar 

  18. L. Li, X. Liu, New results on delay-dependent robust stability criteria of uncertain fuzzy systems with state and input delays. Inf. Sci. 179, 1134–1148 (2009)

    Article  MATH  Google Scholar 

  19. T. Li, Y. Zhang, Fault detection and diagnosis for stochastic systems via output PDFs. J. Franklin Inst. 348, 1140–1152 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Long, G. Yang, Fault detection for networked control systems subject to quantisation and packet dropout. Int. J. Syst. Sci. 44(6), 1150–1159 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Lu, H. Li, Y. Zhu, Quantized \(H_{\infty }\) filtering for singular time-varying delay systems with unreliable communication channel. Circuits Syst. Signal Process. 31(2), 521–538 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. X. Mao, Stochastic Differential Equations and Applications (Horwood Publication, Chichester, 1997)

    MATH  Google Scholar 

  23. Z. Mao, B. Jiang, P. Shi, Observer based fault-tolerant control for a class of nonlinear networked control systems. J. Franklin Inst. 347, 940–956 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. S.K. Nguang, P. Shi, S. Ding, Fault detection for uncertain fuzzy systems: an LMI approach. IEEE Trans. Fuzzy Syst. 15(6), 1251–1262 (2007)

    Article  Google Scholar 

  25. Y. Niu, D.W.C. Ho, C.W. Li, Filtering for discrete fuzzy stochastic systems with sensor nonlinearities. IEEE Trans. Fuzzy Syst. 18(5), 971–978 (2010)

    Article  Google Scholar 

  26. O. Ou, Y. Mao, H. Zhang, L. Zhang, Robust \(H_{\infty }\) control of a class of switching nonlinear systems with time-varying delay via T–S fuzzy model. Circuits Syst. Signal Process. 33, 1411–1437 (2014)

    Article  MathSciNet  Google Scholar 

  27. T.S. Sidhu, Z. Xu, Detection of incipient faults in distribution underground cables. IEEE Trans. Power Delivery 25, 1363–1371 (2010)

    Article  Google Scholar 

  28. K. Tanaka, T. Ikeda, H.O. Wang, Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stability, \(H_{\infty }\) control theory and linear matrix inequalities. IEEE Trans. Fuzzy Syst. 4, 1–13 (1996)

    Article  Google Scholar 

  29. C. Tseng, Robust fuzzy filter design for a class of nonlinear stochastic systems. IEEE Trans. Fuzzy Syst. 15(2), 261–274 (2007)

    Article  Google Scholar 

  30. X. Wan, H. Fang, Fault detection for discrete-time networked nonlinear systems with incomplete measurements. Int. J. Syst. Sci. 44, 2068–2081 (2013)

    Article  MathSciNet  Google Scholar 

  31. Y. Wang, S. Zhang, Z. Li, M. Zhang, Fault detection for a class of nonlinear singular systems over networks with mode-dependent time delays. Circuits Syst. Signal Process. (2014). doi:10.1007/s00034-014-9797-2

    MathSciNet  Google Scholar 

  32. X. Wei, M. Verhaegen, Robust fault detection observer design for linear uncertain systems. Int. J. Control 84(1), 197–215 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. L. Wu, D.W.C. Ho, Fuzzy filter design for nonlinear Itô stochastic systems with application to sensor fault detection. IEEE Trans. Fuzzy Syst. 17(1), 233–242 (2009)

    Article  Google Scholar 

  34. S. Xu, T. Chen, Robust \(H_{\infty }\) control for uncertain stochastic systems with state delay. IEEE Trans. Autom. Control. 47(12), 2089–2094 (2002)

    Article  Google Scholar 

  35. S. Xu, T. Chen, \(H_{\infty }\) output feedback control for uncertain stochastic systems with time-varying delays. Automatica 40, 2091–2098 (2004)

    MATH  Google Scholar 

  36. X. Yao, L. Wu, W. Zheng, Fault detection filter design for markovian jump singular systems with intermittent measurements. IEEE Trans. Signal Process. 59(7), 3099–3199 (2011)

    Article  MathSciNet  Google Scholar 

  37. W. Yang, M. Liu, P. Shi, \(H_{\infty }\) filtering for nonlinear stochastic systems with sensor saturation, quantization and random packet losses. Signal Process. 92, 1387–1396 (2012)

    Article  Google Scholar 

  38. B. Zhang, S. Xu, G. Zong, Y. Zou, Delay-dependent stabilization for stochastic fuzzy systems with time delays. Fuzzy Sets Syst. 158, 2238–2250 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. H. Zhang, Y. Wang, D. Liu, Delay-dependent guaranteed cost control for uncertain stochastic fuzzy systems with multiple time delays. IEEE Trans. Syst. Man Cybern. B Cybern. 38(1), 126–140 (2008)

    Article  Google Scholar 

  40. L. Zhang, E.K. Boukas, L. Baron, H.R. Karimi, Fault detection for discrete-time Markov jump linear systems with partially known transition probabilities. Int. J. Control 83(8), 1564–1572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. X. Zhang, G. Lu, Y. Zheng, Stabilization of networked stochastic time-delay fuzzy systems with data dropout. IEEE Trans. Fuzzy Syst. 16, 798–807 (2008)

    Article  Google Scholar 

  42. Y. Zhang, H. Fang, T. Jiang, Fault detection for nonlinear networked control systems with stochastic interval delay characterisation. Int. J. Syst. Sci. 43, 952–960 (2012)

    Article  MathSciNet  Google Scholar 

  43. X. Zhao, L. Zhang, P. Shi, H.R. Karimi, Robust control of continuous-time systems with state-dependent uncertainties and its application to electronic circuits. IEEE Trans. Ind. Electron. 61(8), 4161–4170 (2014)

    Article  Google Scholar 

  44. Y. Zhao, J. Lam, H. Gao, Fault detection for fuzzy systems with intermittent measurements. IEEE Trans. Fuzzy Syst. 17, 398–410 (2009)

    Article  Google Scholar 

  45. M. Zhong, H. Ye, P. Shi, G. Wang, Fault detection for Markovian jump systems. IEE Proc.-Control Theory Appl. 152, 397–402 (2005)

    Article  Google Scholar 

  46. S. Zhou, W. Ren, J. Lam, Stabilization for T–S model based uncertain stochastic systems. Inf. Sci. 181, 779–791 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editors and the anonymous referees for their valuable comments that greatly improved the exposition of the paper. This work was supported by the National Natural Science Foundation of China under Grant 61403178, 61403199 and by the Natural Science Foundation of Jiangsu Province under Grant BK20140770.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Zhuang.

Appendix

Appendix

Proof of Theorem 1

Define the following Lyapunov function candidate for the system \(({{{\tilde{\Sigma } }_c}})\) in (12) as follows:

$$\begin{aligned} V({\xi (t),\;t})&= {\xi ^\mathrm{T}}(t)P\xi (t) + \int _{t - {\tau _1}(t)}^t {{\xi ^\mathrm{T}}(s){H^\mathrm{T}}QH\xi (s)\mathrm{d}s}\\&\quad +\,\int _{t - {\tau _2}(t)}^t {{\xi ^\mathrm{T}}(s ){H^\mathrm{T}}RH\xi (s)\mathrm{d}s}. \end{aligned}$$

Using Itô formula in Lemma 1, we obtain the stochastic differential as

$$\begin{aligned}&\mathrm{d}V({\xi (t),\;t}) = \mathcal {L}V({\xi (t),\;t})\mathrm{d}t + 2{\xi ^\mathrm{T}}(t)P{{\tilde{E}}_i}(t)H\xi ({t - {\tau _2}(t)})\mathrm{d}\varpi , \nonumber \\&\mathcal {L}V({\xi (t),\;t})= 2\sum \limits _{i = 1}^r {{h_i}({\theta (t)} )} {\xi ^\mathrm{T}}(t) P\left[ {{{\tilde{A}}_i}(t)\xi (t) \!+\! {{\tilde{A}}_{1i}}(t)H\xi ({t - {\tau _1}(t)}) \!+\! {{\tilde{B}}_i}(t)v(t)} \right] \nonumber \\&\quad +\,{\left[ {\sum \limits _{i = 1}^r {{h_i}({\theta (t)})} {{\tilde{E}}_i}(t)H\xi ({t - {\tau _2}(t)})} \right] ^\mathrm{T}} P\left[ {\sum \limits _{i = 1}^r {{h_i}({\theta (t)} )} {{\tilde{E}}_i}(t)H\xi ({t - {\tau _2}(t)})} \right] \nonumber \\&\quad +\,{\xi ^\mathrm{T}}(t){H^\mathrm{T}}({Q + R})H\xi (t) - ({1 - {{\dot{\tau }}_1}(t)}) {\xi ^\mathrm{T}}({t - {\tau _1}(t)} ){H^\mathrm{T}}QH\xi ({t - {\tau _1}(t)}) \nonumber \\&\quad -\,({1 - {{\dot{\tau } }_2}(t)}){\xi ^\mathrm{T}}({t - {\tau _2}(t)}){H^\mathrm{T}}RH\xi ({t - {\tau _2}(t)}). \end{aligned}$$
(38)

By Lemma 2, we have

$$\begin{aligned} \frac{{\mathcal {L}V({\xi (t),\;t})}}{{\sum \nolimits _{i = 1}^r {{h_i}({\theta (t)} )} }}&\leqslant {\xi ^\mathrm{T}}(t)\left[ {P{{\tilde{A}}_i}(t) + {{\tilde{A}}_i}^\mathrm{T}(t)P + {H^\mathrm{T}}({Q + R})H} \right] \xi (t)\nonumber \\&\quad +\,2{\xi ^\mathrm{T}}(t)P{{\tilde{A}}_{1i}}(t)x({t - {\tau _1}(t)})\nonumber \\&\quad +\, 2{\xi ^\mathrm{T}}(t)P{{\tilde{B}}_i}(t)v(t) + {x^\mathrm{T}}({t - {\tau _2}(t)} ){{\tilde{E}}^\mathrm{T}}_i(t)P{{\tilde{E}}_i}(t)x({t - {\tau _2}(t)}) \nonumber \\&\quad -\,({1 - {\mu _1}}){x^\mathrm{T}}({t - {\tau _1}(t)})Qx({t - {\tau _1}(t)}) \nonumber \\&\quad -\,({1 - {\mu _2}}){x^\mathrm{T}}({t - {\tau _2}(t)})Rx({t - {\tau _2}(t)}), \end{aligned}$$
(39)

where (5) and the relationship

$$\begin{aligned} x({t - {\tau _1}(t)}) = H\xi ({t - {\tau _1}(t)}),\quad x({t - {\tau _2}(t)}) = H\xi ({t - {\tau _2}(t)}) \end{aligned}$$

are used. From (21), it is easy to see

$$\begin{aligned} {P^{ - 1}} - \varepsilon _2^{-1}{{\tilde{M}}_{1i}}{{\tilde{M}}^\mathrm{T}}_{1i} > 0. \end{aligned}$$
(40)

Noting (7) and (40) and using Lemmas 3 and 4, we have

$$\begin{aligned}&2{\xi ^\mathrm{T}}(t)P\left[ {\Delta {{\tilde{A}}_i}(t)\xi (t) + \Delta {{\tilde{A}}_{1i}}(t)x({t - {\tau _1}(t)}) + \Delta {{\tilde{B}}_i}(t)v(t)} \right] \nonumber \\&\quad = 2{\xi ^\mathrm{T}}(t)P{{\tilde{M}}_{1i}}{G_i}(t)\left[ {{{\tilde{N}}_{1i}}\xi (t) + {N_{2i}}x({t - {\tau _1}(t)}) + {{\tilde{N}}_{3i}}v(t)} \right] \nonumber \\&\quad \leqslant {\xi ^\mathrm{T}}(t)\left[ {\varepsilon _1^{-1}P{{\tilde{M}}_{1i}}{{\tilde{M}}^\mathrm{T}}_{1i}P + {\varepsilon _1}{{\tilde{N}}_{1i}}^\mathrm{T}{{\tilde{N}}_{1i}}} \right] \xi (t)\nonumber \\&\quad \quad +\,{x^\mathrm{T}}({t - {\tau _1}(t)})\left( {{\varepsilon _1}{N_{2i}}^\mathrm{T}{N_{2i}}}\right) x({t - {\tau _1}(t)}) \nonumber \\&\quad \quad +\,{v^\mathrm{T}}(t)\left( {{\varepsilon _1}{{\tilde{N}}_{3i}}^\mathrm{T}{{\tilde{N}}_{3i}}}\right) v(t) + 2{\xi ^\mathrm{T}}(t)\left( {{\varepsilon _1}{{\tilde{N}}_{1i}}^\mathrm{T}{ N_{2i}}}\right) x({t - {\tau _1}(t)}) \nonumber \\&\quad \quad +\,2{\xi ^\mathrm{T}}(t)\left( {{\varepsilon _1}{{\tilde{N}}_{1i}}^\mathrm{T}{\tilde{N}_{3i}}}\right) v(t) + 2{x^\mathrm{T}}({t - {\tau _1}(t)})\left( {{\varepsilon _1}{N_{2i}}^\mathrm{T}{{\tilde{N}}_{3i}}}\right) v(t), \end{aligned}$$
(41)

and

$$\begin{aligned} {{\tilde{E}}^\mathrm{T}}_i(t)P{{\tilde{E}}_i}(t) \leqslant {{\tilde{E}}^\mathrm{T}}_i{\left( {{P^{ - 1}} - \varepsilon _2^{-1}{{\tilde{M}}_{1i}}{{{\tilde{M}}_{1i}}^\mathrm{T}}}\right) ^{ - 1}}{{\tilde{E}}_i} + {\varepsilon _2}{N_{5i}}^\mathrm{T}{N_{5i}}. \end{aligned}$$
(42)

Substituting (41) and (42) into (39) with \(v(t) = 0\) results in

$$\begin{aligned} \mathcal {L}V({\xi (t),\;t}) \leqslant \sum \limits _{i = 1}^r {{h_i}({\theta (t)} )} \left[ {{\eta ^\mathrm{T}}(t)\Theta _i \eta (t)} \right] , \end{aligned}$$
(43)

where \({\eta ^\mathrm{T}}(t) = \left[ {{\xi ^\mathrm{T}}(t)\;\;{x^\mathrm{T}}({t - {\tau _1}(t)} )\;\;{x^\mathrm{T}}({t - {\tau _2}(t)})} \right] \) and

$$\begin{aligned} \Theta _i = \left[ {\begin{array}{c@{\quad }c@{\quad }c} {{\Upsilon _{11i}}} &{} {{\Upsilon _{12i}}} &{} 0 \\ * &{} {{\Upsilon _{22i}}} &{} 0 \\ * &{} * &{} {{\Upsilon _{33i}} + {{\tilde{E}}^\mathrm{T}}_i{{\left( {{P^{ - 1}} - \varepsilon _2^{-1}{{\tilde{M}}_{1i}}{{{\tilde{M}}_{1i}}^\mathrm{T}}}\right) }^{ - 1}}{{\tilde{E}}_i}} \\ \end{array} } \right] . \end{aligned}$$

By the Schur complement formula, it follows from (21) that \(\Theta _i < 0\), which together with (43) implies

$$\begin{aligned} \mathcal {L}V({\xi (t),\;t}) < 0, \end{aligned}$$
(44)

for all

$$\begin{aligned} \eta (t) = {\left[ {{\xi ^\mathrm{T}}(t)\;\;{x^\mathrm{T}}({t - {\tau _1}(t)} )\;\;{x^\mathrm{T}}({t - {\tau _2}(t)})} \right] ^\mathrm{T}} \ne 0. \end{aligned}$$

Therefore, we have that the fuzzy stochastic FD system \(({{{\tilde{\Sigma } }_c}})\) in (12) with \(v(t) = 0\) is asymptotically mean square stable for all admissible uncertainties.

Now, we will establish the \(H_{\infty }\) performance for the fuzzy stochastic FD system \(({{{\tilde{\Sigma } }_c}})\) in (12). Assuming zero initial condition, we have

$$\begin{aligned} \mathcal { J }&= \mathcal {E}\left\{ {\int _0^\infty {\left( {{e_c}^\mathrm{T}(t){e_c}(t)- {\gamma ^2}{v^\mathrm{T}}(t)v(t)}\right) } \mathrm{d}t} \right\} \\&\leqslant \mathcal {E}\left\{ {\int _0^\infty {\left( {{e_c}^\mathrm{T}(t){e_c}(t) - {\gamma ^2}{v^\mathrm{T}}(t)v(t)}\right) } \mathrm{d}t}\right\} \\&\quad +\,\mathcal {E}\left\{ {V\left( {\xi (\infty ),\;\infty }\right) }\right\} - \mathcal {E}\{ {V({0,\;0})} \} \\&= \mathcal {E}\left\{ {\int _0^\infty {\left[ {{e_c}^\mathrm{T}(t){e_c}(t) - {\gamma ^2}{v^\mathrm{T}}(t)v(t) + \mathcal {L}V({\xi (t),\;t})} \right] } \mathrm{d}t}\right\} . \end{aligned}$$

According to Lemma 2, we can find

$$\begin{aligned} {e_c}^\mathrm{T}(t){e_c}(t) \leqslant \sum \limits _{i = 1}^r {{h_i} ({\theta (t)})} \left[ {{\xi ^\mathrm{T}}(t){{\tilde{C}}^\mathrm{T}}_i{{\tilde{C}}_i}\xi (t) + 2{\xi ^\mathrm{T}}(t){{\tilde{C}}^\mathrm{T}}_i{{\tilde{D}}_i}v(t) + {v^\mathrm{T}}(t){{\tilde{D}}^\mathrm{T}}_i{{\tilde{D}}_i}v(t)} \right] . \end{aligned}$$

It follows from (41), (42), that

$$\begin{aligned} {e_c}^\mathrm{T}(t){e_c}(t) - {\gamma ^2}{v^\mathrm{T}}(t)v(t) + \mathcal {L}V({\xi (t),\;t}) \leqslant \sum \limits _{i = 1}^r {{h_i}({\theta (t)})} {\psi ^\mathrm{T}}(t){\Omega _i}{\psi }(t), \end{aligned}$$

where \({\psi ^\mathrm{T}}(t) = \left[ {{\xi ^\mathrm{T}}(t)\;\;{x^\mathrm{T}}({t - {\tau _2}(t)} )\;\;{v^\mathrm{T}}(t)} \right] \) and

$$\begin{aligned} {\Omega _i} = \left[ {\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} {{\Upsilon _{11i}} + {{\tilde{C}}^\mathrm{T}}_i{{\tilde{C}}_i}} &{} {{\Upsilon _{12i}}} &{} 0 &{} {{\Upsilon _{14i}}}+ {{\tilde{C}}_i}^\mathrm{T}{{\tilde{D}}_i}\\ * &{} {{\Upsilon _{22i}}} &{} 0 &{} {{\Upsilon _{24i}}} \\ * &{} * &{} {{\Upsilon _{33i}} - {{\tilde{E}}^\mathrm{T}}_i\Upsilon _{55i}^{ - 1}\tilde{E}_i} &{} 0 \\ * &{} * &{} * &{} {{\Upsilon _{44i}}}+ {{\tilde{D}}^\mathrm{T}}_i{{\tilde{D}}_i}\\ \end{array} } \right] . \end{aligned}$$

By Schur complement, (21) implies \({\Omega _i} < 0\), and thus

$$\begin{aligned} \mathcal {J} = \mathcal {E}\left\{ {\int _0^\infty {\left[ {{e_c}^\mathrm{T}(t){e_c}(t) - {\gamma ^2}{v^\mathrm{T}}(t)v(t)} \right] }\mathrm{d}t }\right\} < 0, \end{aligned}$$

which implies (18). The \(H_{\infty }\) performance has been established and the proof is completed. \(\square \)

Proof of Theorem 2

By Schur complement, the matrix inequality condition (21) in Theorem 1 can be described as the following matrix inequality:

$$\begin{aligned} {\Phi _i} = \left[ {\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} {{\Phi _{11i}}} &{} {{\Phi _{12i}}} &{} 0 &{} {{\Phi _{14i}}} &{} 0 &{} {{{\tilde{C}}_i}^\mathrm{T}} &{} 0 &{} 0 &{} {P{{\tilde{M}}_{1i}}} &{} {{{\tilde{N}}_{1i}}^\mathrm{T}} \\ * &{} {{\Phi _{22}}} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {{N_{2i}}^\mathrm{T}} \\ * &{} * &{} {{\Phi _{33}}} &{} 0 &{} {{{\tilde{E}}^\mathrm{T}}_i} &{} 0 &{} {{N_{5i}}^\mathrm{T}} &{} 0 &{} 0 &{} 0 \\ * &{} * &{} * &{} { - {\gamma ^2}I} &{} 0 &{} {{{\tilde{D}}_i}^\mathrm{T}} &{} 0 &{} 0 &{} 0 &{} {{{\tilde{N}}_{3i}}^\mathrm{T}} \\ * &{} * &{} * &{} * &{} { - {P^{ - 1}}} &{} 0 &{} 0 &{} {{{\tilde{M}}_{1i}}} &{} 0 &{} 0 \\ * &{} * &{} * &{} * &{} * &{} { - I} &{} 0 &{} 0 &{} 0 &{} 0 \\ * &{} * &{} * &{} * &{} * &{} * &{} { - \varepsilon _2^{ - 1}I} &{} 0 &{} 0 &{} 0 \\ * &{} * &{} * &{} * &{} * &{} * &{} * &{} { - {\varepsilon _2}I} &{} 0 &{} 0 \\ * &{} * &{} * &{} * &{} * &{} * &{} * &{} * &{} { - {\varepsilon _1}I} &{} 0 \\ * &{} * &{} * &{} * &{} * &{} * &{} * &{} * &{} * &{} { - \varepsilon _1^{ - 1}I} \\ \end{array} } \right] < 0,\nonumber \\ \end{aligned}$$
(45)

where

$$\begin{aligned}&{\Phi _{11i}} = P{{\tilde{A}}_i} + {{\tilde{A}}_i}^\mathrm{T}P + {H^\mathrm{T}}({Q+R})H,\;\;{\Phi _{12i}} = P{{\tilde{A}}_{1i}} ,\ {\Phi _{14i}} = P{{\tilde{B}}_i} ,\\&{\Phi _{22}} = - ({1 - {\mu _1}})Q,\ {\Phi _{33}} = - ({1 - {\mu _2}})R. \end{aligned}$$

Performing a congruence transformation to (45) by diagonal matrix \({\text {diag}}(I,\;I,\;I,\;I,P,\;I,\;I,\;I,\;I,\;I )\), we obtain

$$\begin{aligned} \left[ {\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} {{\Phi _{11i}}} &{} {{\Phi _{12i}}} &{} 0 &{} {{\Phi _{14i}}} &{} 0 &{} {{{\tilde{C}}_i}^\mathrm{T}} &{} 0 &{} 0 &{} {P{{\tilde{M}}_{1i}}} &{} {{{\tilde{N}}_{1i}}^\mathrm{T}} \\ * &{} {{\Phi _{22}}} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {{N_{2i}}^\mathrm{T}} \\ * &{} * &{} {{\Phi _{33}}} &{} 0 &{} {{{\tilde{E}}^\mathrm{T}}_iP} &{} 0 &{} {{N_{5i}}^\mathrm{T}} &{} 0 &{} 0 &{} 0 \\ * &{} * &{} * &{} { - {\gamma ^2}I} &{} 0 &{}{{{\tilde{D}}_i}^\mathrm{T}} &{} 0 &{} 0 &{} 0 &{} {{{\tilde{N}}_{3i}}^\mathrm{T}} \\ * &{} * &{} * &{} * &{} { - P} &{} 0 &{} 0 &{} {P{{\tilde{M}}_{1i}}} &{} 0 &{} 0 \\ * &{} * &{} * &{} * &{} * &{} { - I} &{} 0 &{} 0 &{} 0 &{} 0 \\ * &{} * &{} * &{} * &{} * &{} * &{} { - \varepsilon _2^{ - 1}I} &{} 0 &{} 0 &{} 0 \\ * &{} * &{} * &{} * &{} * &{} * &{} * &{} { - {\varepsilon _2}I} &{} 0 &{} 0 \\ * &{} * &{} * &{} * &{} * &{} * &{} * &{} * &{} { - {\varepsilon _1}I} &{} 0 \\ * &{} * &{} * &{} * &{} * &{} * &{} * &{} * &{} * &{} { - \varepsilon _1^{ - 1}I} \\ \end{array} } \right] < 0.\nonumber \\ \end{aligned}$$
(46)

Let \(P \triangleq \mathrm{diag}({U,\;V}) > 0\) in (46), where \( U \in {\mathbb {R}^{2n \times 2n}}\) and \(V \in {\mathbb {R}^{k \times k}} \); we get a new result. Specially, given a scalar \(\gamma >0\), the fuzzy stochastic fault detection system \(({{{\tilde{\Sigma } }_c}})\) in (12) is asymptotically mean square stable with an \({H_\infty }\) performance level \(\gamma \) if there exist \(U>0\) and \(V>0\) such that the following LMI holds:

$$\begin{aligned} \left[ {\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} {{\Psi _{11i}}} &{} 0 &{} {{\Psi _{13i}}} &{} 0 &{} {{\Psi _{15i}}} &{} 0 &{} {{{\hat{C}}_i}^\mathrm{T}} &{} 0 &{} 0 &{} {U{{\hat{M}}_{1i}}} &{} {{{\hat{N}}_{1i}}^\mathrm{T}} \\ * &{} {{\Psi _{22}}} &{} 0 &{} 0 &{} {{\Psi _{25i}}} &{} 0 &{} { - {C_w}^\mathrm{T}} &{} 0 &{} 0 &{} 0 &{} 0 \\ * &{} * &{} {{\Psi _{33}}} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {{N_{2i}}^\mathrm{T}} \\ * &{} * &{} * &{} {{\Psi _{44}}} &{} 0 &{} {{{\hat{E}^{\mathrm{T}}}_i}U} &{} 0 &{} {{N_{5i}}^\mathrm{T}} &{} 0 &{} 0 &{} 0 \\ * &{} * &{} * &{} * &{} { - {\gamma ^2}I} &{} 0 &{} {{{\tilde{D}}_i}^\mathrm{T}} &{} 0 &{} 0 &{} 0 &{} {{{\tilde{N}}_{3i}}^\mathrm{T}} \\ * &{} * &{} * &{} * &{} * &{} { - U} &{} 0 &{} 0 &{} {U{{\hat{M}}_{1i}}} &{} 0 &{} 0 \\ * &{} * &{} * &{} * &{} * &{} * &{} { - I} &{} 0 &{} 0 &{} 0 &{} 0 \\ * &{} * &{} * &{} * &{} * &{} * &{} * &{} { - \varepsilon _2^{ - 1}I} &{} 0 &{} 0 &{} 0 \\ * &{} * &{} * &{} * &{} * &{} * &{} * &{} * &{} { - {\varepsilon _2}I} &{} 0 &{} 0 \\ * &{} * &{} * &{} * &{} * &{} * &{} * &{} * &{} * &{} { - {\varepsilon _1}I} &{} 0 \\ * &{} * &{} * &{} * &{} * &{} * &{} * &{} * &{} * &{} * &{} { - \varepsilon _1^{ - 1}I} \\ \end{array} } \right] < 0,\nonumber \\ \end{aligned}$$
(47)

where

$$\begin{aligned} {\Psi _{11i}}&= U{{\hat{A}}_i} + {{\hat{A}}^\mathrm{T}}_iU + W,\ {\Psi _{22}} = V{A_w} + A_w^\mathrm{T}V,\ {\Psi _{33}} = {\Phi _{22}}= - ({1 - {\mu _1}})Q,\\ {\Psi _{44}}&= {\Phi _{33}}= - ({1 - {\mu _2}})R,\ {\Psi _{13i}} = U{{\hat{A}}_{1i}} , {\Psi _{15i}} = U{{\hat{B}}_i} ,\ {\Psi _{25i}} = V{{\hat{B}}_w} , \\ {{\hat{A}}_i}&= \left[ {\begin{array}{c@{\quad }c} {{A_{i}}} &{} 0 \\ {{B_c}{C_i}} &{} {{A_c}} \\ \end{array} } \right] ,\quad {{\hat{A}}_{1i}} = \left[ {\begin{array}{c} {{A_{1i}}} \\ {{B_c}{C_{1i}}} \\ \end{array} } \right] ,\quad {{\hat{B}}_i} = \left[ {\begin{array}{c@{\quad }c@{\quad }c} {{B_{0i}}} &{} {{B_i}} &{} {{B_{1i}}} \\ {{B_c}{D_{0i}}} &{} {{B_c}{D_i}} &{} {{B_c}{D_{1i}}} \\ \end{array} } \right] , \\ {{\hat{B}}_w}&= \left[ {\begin{array}{c@{\quad }c@{\quad }c} 0 &{} 0 &{} {{B_w}} \\ \end{array} } \right] ,\quad {{\hat{E}}_i} = \left[ {\begin{array}{c} {{E_i}} \\ {{B_c}{F_i}} \\ \end{array} } \right] ,\quad W = \left[ {\begin{array}{c@{\quad }c} {Q + R} &{} 0 \\ 0 &{} 0 \\ \end{array} } \right] , \\ {{\hat{N}}_{1i}}&= \left[ {\begin{array}{c@{\quad }c} {{N_{1i}}} &{} 0 \\ \end{array} } \right] , \quad {{\hat{M}}^\mathrm{T}}_{1i} = \left[ {\begin{array}{c@{\quad }c} {{M_{1i}}^\mathrm{T}} &{} {{{({{B_c}{M_{2i}}})}^\mathrm{T}}} \\ \end{array} } \right] , \quad {{\hat{C}}_i} = \left[ {\begin{array}{c@{\quad }c} 0 &{} {{C_c}} \\ \end{array} } \right] . \end{aligned}$$

Now, partition \(U\) as

$$\begin{aligned} U = \left[ {\begin{array}{c@{\quad }c} {{U_1}} &{} {{U_2}} \\ * &{} {{U_3}} \\ \end{array} } \right] > 0, \end{aligned}$$
(48)

where \({U_k} \in {\mathbb {R}^{n \times n}},\;k = 1,\;2,\;3.\)

Without loss of generality, we assume \(U_2\) is nonsingular; if not, \(U_2\) may be perturbed by \(\Delta {U_2}\) with sufficiently small norm such that \(U_2+\Delta {U_2}\) is nonsingular and satisfying (47). Define the following matrices that are also nonsingular:

$$\begin{aligned} \aleph = \left[ {\begin{array}{c@{\quad }c} I &{} 0 \\ 0 &{} {{U_3}^{ - 1}{U_2}^\mathrm{T}} \\ \end{array} } \right] ,\quad \mathcal {U }= {U_1},\quad \mathcal {V }= {U_2}{U_3}^{ - 1}{U_2}^\mathrm{T}. \end{aligned}$$
(49)

and

$$\begin{aligned} \left[ {\begin{array}{c@{\quad }c} {{\mathcal {A}_c}} &{} {{\mathcal {B}_c}} \\ {{\mathcal {C}_c}} &{} 0 \\ \end{array} } \right] = \left[ {\begin{array}{c@{\quad }c} {{U_2}} &{} 0 \\ 0 &{} I \\ \end{array} } \right] \left[ {\begin{array}{c@{\quad }c} {{A_c}} &{} {{B_c}} \\ {{C_c}} &{} 0 \\ \end{array} } \right] \left[ {\begin{array}{c@{\quad }c} {{U_3}^{ - 1}{U_2}^\mathrm{T}} &{} 0 \\ 0 &{} I \\ \end{array} } \right] = \left[ {\begin{array}{c@{\quad }c} {{U_2}{A_c}{U_3}^{ - 1}{U_2}^\mathrm{T}} &{} {{U_2}{B_c}} \\ {{C_c}{U_3}^{ - 1}{U_2}^\mathrm{T}} &{} 0 \\ \end{array} } \right] .\nonumber \\ \end{aligned}$$
(50)

Performing a congruence transformation to (47) by diagonal matrix \(diag(\aleph ,\;I,I,I,I,\aleph ,I,I,I,I,I)\), we get

$$\begin{aligned} \left[ {\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} {{{\tilde{\Psi }}_{11i}}} &{} 0 &{} {{{\tilde{\Psi } }_{13i}}} &{} 0 &{} {{{\tilde{\Psi } }_{15i}}} &{} 0 &{} {{\aleph ^\mathrm{T}}{{\hat{C}}_i}^\mathrm{T}} &{} 0 &{} 0 &{} {{\aleph ^\mathrm{T}}U{{\hat{M}}_{1i}}} &{} {{\aleph ^\mathrm{T}}{{\hat{N}}_{1i}}^\mathrm{T}} \\ * &{} {{\Psi _{22}}} &{} 0 &{} 0 &{} {{\Psi _{25i}}} &{} 0 &{} { - {C_w}^\mathrm{T}} &{} 0 &{} 0 &{} 0 &{} 0 \\ * &{} * &{} {{\Psi _{33}}} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} {{N_{2i}}^\mathrm{T}} \\ * &{} * &{} * &{} {{\Psi _{44}}} &{} 0 &{} {{{\hat{E}^{\mathrm{T}}}_i}U\aleph } &{} 0 &{} {{N_{5i}}^\mathrm{T}} &{} 0 &{} 0 &{} 0 \\ * &{} * &{} * &{} * &{} { - {\gamma ^2}I} &{} 0 &{} {{{\tilde{D}}_i}^\mathrm{T}} &{} 0 &{} 0 &{} 0 &{} {{{\tilde{N}}_{3i}}^\mathrm{T}} \\ * &{} * &{} * &{} * &{} * &{} { - {\aleph ^\mathrm{T}}U\aleph } &{} 0 &{} 0 &{} {{\aleph ^\mathrm{T}}U{{\hat{M}}_{1i}}} &{} 0 &{} 0 \\ * &{} * &{} * &{} * &{} * &{} * &{} { - I} &{} 0 &{} 0 &{} 0 &{} 0 \\ * &{} * &{} * &{} * &{} * &{} * &{} * &{} { - \varepsilon _2^{ - 1}I} &{} 0 &{} 0 &{} 0 \\ * &{} * &{} * &{} * &{} * &{} * &{} * &{} * &{} { - {\varepsilon _2}I} &{} 0 &{} 0 \\ * &{} * &{} * &{} * &{} * &{} * &{} * &{} * &{} * &{} { - {\varepsilon _1}I} &{} 0 \\ * &{} * &{} * &{} * &{} * &{} * &{} * &{} * &{} * &{} * &{} { - \varepsilon _1^{ - 1}I} \\ \end{array} } \right] < 0,\nonumber \\ \end{aligned}$$
(51)

where

$$\begin{aligned} {{\tilde{\Psi } }_{11i}}&= {\aleph ^\mathrm{T}}({U{{\hat{A}}_i} + {{\hat{A}}^\mathrm{T}}_iU + W}) \nonumber \\ \aleph&= \left[ {\begin{array}{c@{\quad }c@{\quad }c} {\mathcal {U}{A_i} \!+\! {A_i}^\mathrm{T}\mathcal {U} \!+\! {\mathcal {B}_c}{C_i} \!+\! {C_i}^\mathrm{T}{\mathcal {B}_c}^\mathrm{T} \!+\! Q \!+\! R} &{} {{\mathcal {A}_c} \!+\! {A_i}^\mathrm{T}\mathcal {V} + {C_i}^\mathrm{T}{\mathcal {B}_c}^\mathrm{T}} \\ * &{} {{\mathcal {A}_c} + {\mathcal {A}_c}^\mathrm{T}} \\ \end{array} } \right] , \nonumber \\ {{\tilde{\Psi } }_{13i}}&= {\aleph ^\mathrm{T}}({U{{\hat{A}}_{1i}} } ) = \left[ {\begin{array}{c} {\mathcal {U}{A_{1i}} + {\mathcal {B}_c}{C_{1i}} } \\ {\mathcal {V}{A_{1i}} + {\mathcal {B}_c}{C_{1i}}} \\ \end{array} } \right] , \ - {\aleph ^\mathrm{T}}U\aleph = \left[ {\begin{array}{c@{\quad }c} { - \mathcal {U}} &{} { - \mathcal {V}} \\ * &{} { - \mathcal {V}} \\ \end{array} } \right] ,\nonumber \\ {{\tilde{\Psi } }_{15i}}&= {\aleph ^\mathrm{T}}({U{{\hat{B}}_i} } ) = \left[ {\begin{array}{c@{\quad }c@{\quad }c} {\mathcal {U}{B_{0i}} + {\mathcal {B}_c}{D_{0i}} } &{} {\mathcal {U}{B_i} + {\mathcal {B}_c}{D_i}} &{} {\mathcal {U}{B_{1i}} + {\mathcal {B}_c}{D_{1i}} } \\ {\mathcal {V}{B_{0i}} + {\mathcal {B}_c}{D_{0i}}} &{} {\mathcal {V}{B_i} + {\mathcal {B}_c}{D_i}} &{} {\mathcal {V}{B_{1i}} + {\mathcal {B}_c}{D_{1i}} } \\ \end{array} } \right] , \nonumber \\ {\aleph ^\mathrm{T}}{{\hat{C}}_i}^\mathrm{T}&= \left[ {\begin{array}{c} 0 \\ {{\mathcal {C}_c}^\mathrm{T}} \\ \end{array} } \right] ,\nonumber \\ {\aleph ^\mathrm{T}}U{{\hat{M}}_{1i}}&= \left[ {\begin{array}{c} {\mathcal {U}{M_{1i}} + {\mathcal {B}_c}{M_{2i}}} \\ {\mathcal {V}{M_{1i}} + {\mathcal {B}_c}{M_{2i}}} \\ \end{array} } \right] ,\quad {\aleph ^\mathrm{T}}{{\hat{N}}_{1i}^\mathrm{T}} = \left[ {\begin{array}{c} {N_{1i}^\mathrm{T}} \\ 0 \\ \end{array} } \right] ,\nonumber \\ {{\hat{E}}^\mathrm{T}}_iU\aleph&= \left[ {\begin{array}{c@{\quad }c} {E_i^\mathrm{T}\mathcal {U} + F_i^\mathrm{T}{\mathcal {B}_c}^\mathrm{T}} &{} {E_i^\mathrm{T}\mathcal {V} + F_i^\mathrm{T}{\mathcal {B}_c}^\mathrm{T}} \\ \end{array} } \right] . \end{aligned}$$
(52)

Considering (52), we can get LMI (24) from (51). Moreover, note that (50) is equivalent to

$$\begin{aligned} \left[ {\begin{array}{c@{\quad }c} {{A_c}} &{} {{B_c}} \\ {{C_c}} &{} 0 \\ \end{array} } \right]&= \left[ {\begin{array}{c@{\quad }c} {U_2^{ - 1}} &{} 0 \\ 0 &{} I \\ \end{array} } \right] \left[ {\begin{array}{c@{\quad }c} {{\mathcal {A}_c}} &{} {{\mathcal {B}_c}} \\ {{\mathcal {C}_c}} &{} 0 \\ \end{array} } \right] \left[ {\begin{array}{c@{\quad }c} {{U_2}^{ - T}{U_3}} &{} 0 \\ 0 &{} I \\ \end{array} } \right] \nonumber \\&= \left[ {\begin{array}{c@{\quad }c} {{{({{U_2}^{ - T}{U_3}})}^{ - 1}}} &{} 0 \\ 0 &{} I \\ \end{array} } \right] \left[ {\begin{array}{c@{\quad }c} {{\mathcal {V}^{ - 1}}} &{} 0 \\ 0 &{} I \\ \end{array} } \right] \left[ {\begin{array}{c@{\quad }c} {{\mathcal {A}_c}} &{} {{\mathcal {B}_c}} \\ {{\mathcal {C}_c}} &{} 0 \\ \end{array} } \right] \left[ {\begin{array}{c@{\quad }c} {{U_2}^{ - T}{U_3}} &{} 0 \\ 0 &{} I \\ \end{array} } \right] \end{aligned}$$
(53)

Also note that the filter matrices \(A_{c}, B_{c}\), and \(C_{c}\) in (10) can be written as (53), which implies that \({{U_2}^{ - T}{U_3}}\) can be viewed as a similarity transformation on the state-space realization of the filter and, as such, has no effect on the filter mapping from \(y\) to \(\chi _{c}\). Without loss of generality, we set \({{U_2}^{ - T}{U_3}}=I\) and thus obtain (26). Therefore, the filter \(({{{ \Sigma }_c}})\) in (10) can be constructed by (26). This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, G., Yu, X. & Chen, J. Fault Detection Filtering for Uncertain Itô Stochastic Fuzzy Systems With Time-Varying Delays. Circuits Syst Signal Process 34, 2839–2871 (2015). https://doi.org/10.1007/s00034-015-9994-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-9994-7

Keywords

Navigation