Skip to main content
Log in

Efficient Optimization of Reference-Based Negentropy for Noncircular Sources in Complex ICA

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Bingham proposed a complex fast independent component analysis (c-FastICA) algorithm to approximate the nengentropy of circular sources using nonlinear functions. Novey proposed extending the work of Bingham using information from a pseudo-covariance matrix for noncircular sources, particularly for sub-Gaussian noncircular signals such as binary phase-shift keying signals. Based on this work, in the present paper we propose a new reference-based contrast function by introducing reference signals into the negentropy, upon which an efficient optimization FastICA algorithm is derived for noncircular sources. This new approach is similar to Novey’s nc-FastICA algorithm, but differs in that it is much more efficient in terms of the computational speed, which is significantly notable with a large number of samples. In this study, the local stability of our reference-based negentropy is analyzed and the derivation of our new algorithm is described in detail. Simulations conducted to demonstrate the performance and effectiveness of our method are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Adali, H.L. Li, M. Novey, J.F. Cardoso, Complex ICA using nonlinear functions. IEEE Trans. Signal Process. 56(9), 4536–4544 (2008)

    Article  MathSciNet  Google Scholar 

  2. S. Amari, A. Cichocki, H.H. Yang, A new learning algorithm for blind signal separation, in Advances in Neural Information Processing Systems, ed. by D. S. Touretzky, M. C. Mozer, M. E. Hasselmo, (Cambridge, MA: MIT Press, 1996), 8, pp. 757–763

  3. E. Bingham, A. Hyvarinen, A fast fixed-point algorithm for independent component analysis of complex valued signals. Int. J. Neural Sys. 10(1), 1–8 (2000)

    Article  Google Scholar 

  4. D.H. Brandwood, A complex gradient operator and its application in adaptive array theory. Proc. Inst. Elect. Eng. 130(1), 11–16 (1983)

    MathSciNet  Google Scholar 

  5. M. Castella, E. Moreau, A new method for kurtosis maximization and source separation. in IEEE International Conference Acoust., Speech Signal Process (ICASSP2010), Dallas, TX, pp. 2670–2673 (2010)

  6. M. Castella, E. Moreau, A new optimization method for reference-based quadratic contrast functions in a deflation scenario. in IEEE International Conference Acoust., Speech Signal Processing (ICASSP2009), Taipei, Taiwan, R.O.C., pp. 3161–3164 (2009)

  7. M. Castella, E. Moreau, New kurtosis optimization schemes for MISO equalization. IEEE Trans. Signal Process. 60(3), 1319–1330 (2012)

    Article  MathSciNet  Google Scholar 

  8. S.C. Douglas, J. Eriksson, V. Koivunen, Fixed-point complex ICA algorithms for the blind separation of sources using their real or imaginary components. in Proceedings of 6th International Conference ICA BSS, Charleston, SC, pp. 343–351, (2006)

  9. S.C. Douglas, Fixed-point algorithms for the blind separation of arbitrary complex-valued non-Gaussian signal mixtures. EURASIP J. Appl. Signal Process. 2007(1), 80–88 (2007)

    Google Scholar 

  10. L.T. Duarte et al., Application of blind source separation methods to ion-selective electrode arrays in flow-injection analysis. IEEE Sens. J. 14(7), 2228–2229 (2014)

    Article  Google Scholar 

  11. J. Eriksson, V. Koivunen, Complex-valued ICA using second-order statistics, in Proceedings IEEE Workshop Machine Learning for Signal Processing (MLSP), Sao Luis, Brazil, pp. 183–192, (2004)

  12. Y.N. Guo et al., Edge effect elimination in single-mixture blind source separation. Circuits Syst. Signal Process. 32(5), 2317–2334 (2013)

    Article  MathSciNet  Google Scholar 

  13. A. Hyvarinen, E. Oja, Independent Component Analysis by general nonlinear Hebbian-like learning rules. Signal Process. 64, 301–313 (1998)

    Article  MATH  Google Scholar 

  14. A. Hyvarinen, E. Oja, A fast fixed-point algorithm for independent component analysis. Neural Netw. 10(3), 626–634 (1999)

    Article  Google Scholar 

  15. A. Hyvarinen, E. Oja, Independent component analysis: algorithms and applications. Neural Netw. 13(4–5), 411–430 (2000)

    Article  Google Scholar 

  16. H. Li, T. Adali, Gradient and fixed-point complex ICA algorithms based on kurtosis maximization, in Proceedings of IEEE Workshop Machine Learning for Signal Processing (MLSP), Maynooth, Ireland, pp. 85–90, (2006)

  17. J.H. Li et al., De-multiplexing based on complex ICA for mode group diversity multiplexing system. Opt. Quantum Electron. 47(2), 217–224 (2015)

    Article  Google Scholar 

  18. Y.B. Li, W. Nie, F. Ye, A complex mixing matrix estimation algorithm based on single source points. Circuits Syst. Signal Process. 34, 1–15 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. X.L. Li, T. Adali, Blind separation of noncircular correlated sources using Gaussian entropy rate. IEEE Trans. Signal Process. 59(6), 2969–2975 (2011)

    Article  MathSciNet  Google Scholar 

  20. X.L. Li, T. Adali, Noncircular complex ICA by generalized householder reflections. IEEE Trans. Signal Process. 61(24), 6423–6430 (2013)

    Article  MathSciNet  Google Scholar 

  21. G.R. Naik, D.K. Kumar, M. Palaniswami, Signal processing evaluation of myoelectric sensor placement in low-level gestures: sensitivity analysis using independent component analysis. Expert Syst. 31(3), 91–99 (2014)

    Article  Google Scholar 

  22. G.R. Naik, K.G. Baker, H.T. Nguyen, Dependence independence measure for posterior and anterior EMG sensors used in simple and complex finger flexion movements: Evaluation using SDICA. IEEE J. Biomed. Health Inform. 19(5), 1689–1696 (2015)

    Article  Google Scholar 

  23. F. Neeser, J. Massey, Proper complex random processes with applications to information theory. IEEE Trans. Inf. Theory 39(4), 1293–1302 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Novey, T. Adali, ICA by maximization of non-Gaussianity using complex functions. presented at Proceedings of IEEE Workshop Machine Learning for Signal Processing (MLSP), Mystic, CT, (2005)

  25. M. Novey, T. Adali, On extending the complex FastICA algorithm to noncircular sources. IEEE Trans. Signal Process. 56(5), 2148–2154 (2008)

    Article  MathSciNet  Google Scholar 

  26. M. Novey, T. Adali, Complex ICA by negentropy maximization. IEEE Trans. Neural Netw. 19(4), 596–609 (2008)

    Article  Google Scholar 

  27. G. Pendharkar et al., Using blind source separation on accelerometry data to analyze and distinguish the toe walking gait from normal gait in ITW children. Biomed. Signal Process. Control. 13, 41–49 (2014)

    Article  Google Scholar 

  28. T.L. Peng, Y. Chen, Z.L. Liu, A time-frequency domain blind source separation method for underdetermined instantaneous mixtures. CIrcuits Syst. Signal Process. 34, 1–13 (2015)

    Article  MathSciNet  Google Scholar 

  29. A. van den Bos, Complex gradient and Hessian, in Proceedings of Inst. Elect. Eng. Image Signal Process., 141, pp. 380–382, (1994)

  30. W.V.D. Wijesinghe, G.M.R.I. Godaliyadda, M.P.B. Ekanayake, H.K. Garg, A generalized ICA algorithm for extraction of super and sub Gaussian source signals from a complex valued mixture. in IEEE 8th International Conference on Industrial and Information Systems (ICIIS2013), Aug. 18–20, Sri Lanka, pp. 144–149, (2013)

  31. W. Wirtinger, Zur formalen theorie der funktionen von mehr complexen veranderlichen. Math. Ann. 97, 357–375 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  32. K.P. Yu, K. Yang, Y.H. Bai, Estimation of modal parameters using the sparse component analysis based underdetermined blind source separation. Mech. Syst. Signal Process. 45(2), 302–316 (2014)

    Article  Google Scholar 

  33. M.C. Yu et al., ICA of full complex-valued fMRI data using phase information of spatial maps. J. Neurosci. Methods 249, 75–91 (2015)

    Article  Google Scholar 

  34. W. Zhao, Y.H. Shen, J.G. Wang, Z.G. Yuan, and W. Jian, New methods for the efficient optimization of cumulant-based contrast functions, in Proceedings of the 5th IET International Conference Wireless, Mobile and Multimedia Netw. (ICWMMN 2013), Beijing, China, PP. 345–349, (2013)

  35. W. Zhao, Y.H. Shen, Z.G. Yuan, Y.M. Wei, Y.F. Cao, P.C. Xu, W. Jian, An efficient and robust algorithm for BSS by maximizing reference-based negentropy. Int. J. Electron. Commun. (2105), doi: 10.1016/j.aeue.2015.05.008. (Published online)

  36. W. Zhao, Y.M. Wei, Y.H. Shen, Z.G. Yuan, P.C. Xu, W. Jian, A novel FastICA method for the reference-based contrast functions. Radioengineering 23(4), 1221–1225 (2014)

    Google Scholar 

  37. W. Zhao, Y.H. Shen, Z.G. Yuan, D.W. Liu, P.C. Xu, Y.M. Wei, W. Jian, N. Sha, A novel method for complex-valued signals in independent component analysis framework. Circuits Syst. Signal Process. 34(6), 1893–1913 (2015). doi:10.1007/s00034-014-9929-8

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the NSF of Jiangsu Province of China under Grant No. BK2012057, and by the National Natural Science Foundation of China under Grant Nos. 61172061 and 61201242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhao.

Appendix

Appendix

First, we make orthogonal changes to coordinates \({\mathbf{p}} = {{\mathbf{A}}^H}{\mathbf{w}}\) and \({\mathbf{q}} = {{\mathbf{A}}^H}{\mathbf{v}}\) under the condition that reference signals update following objective signals, which results in the contrast function \(I\left( {{\mathbf{p}},{\mathbf{q}}} \right) = E\left\{ {G\left( {y{z^ * }} \right) } \right\} \), where \(y = {{\mathbf{w}}^H}{\mathbf{x}} = {{\mathbf{p}}^H}{\mathbf{s}}\) and \(z = {{\mathbf{v}}^H}{\mathbf{x}} = {{\mathbf{q}}^H}{\mathbf{s}}\). Without a loss of generality, we assume an optimal solution for \({s_1}\) at \({{\mathbf{p}}_1} = {\left[ {{e^{j\theta }},0, \ldots ,0} \right] ^T}\), where \(\theta \) points toward the direction of the principal component of \({s_1}\), as shown in [24].

Second, similar to the approach in [25], we seek a Taylor series expansion of I around the optimal solution \({{\mathbf{p}}_1}\), and obtain the gradient and Hessian matrices in the complex domain by differentiating with respect to \({\mathbf{p}}\) while treating \({{\mathbf{q}}^ * }\) as a constant. Similar to (18), we use (3)–(6), and the complex gradient defined in [29] to obtain the gradient as

$$\begin{aligned} \widetilde{\nabla }_{\mathbf{p}}^ * I = E\left( {\begin{array}{c} {\frac{{\partial I}}{{\partial p_1^ * }}}\\ {\frac{{\partial I}}{{\partial {p_1}}}}\\ \vdots \\ {\frac{{\partial I}}{{\partial p_N^ * }}}\\ {\frac{{\partial I}}{{\partial {p_N}}}} \end{array}} \right) = E\left( {\begin{array}{c} {\frac{{\partial I}}{{\partial p_1^ * }}}\\ {\frac{{\partial I}}{{\partial {q_1}}}}\\ \vdots \\ {\frac{{\partial I}}{{\partial p_N^ * }}}\\ {\frac{{\partial I}}{{\partial {q_N}}}} \end{array}} \right) = E\left( {\begin{array}{c} {E\left\{ {g\left( {y{z^ * }} \right) {z^ * }{s_1}} \right\} } \\ {E\left\{ {g\left( {y{z^ * }} \right) ys_1^ * } \right\} } \\ \vdots \\ {E\left\{ {g\left( {y{z^ * }} \right) {z^ * }{s_N}} \right\} }\\ {E\left\{ {g\left( {y{z^ * }} \right) ys_N^ * } \right\} } \end{array}} \right) \end{aligned}$$
(30)

where the middle term holds because \({\mathbf{q}}\) updates following \({\mathbf{p}}\) such that the values of \(\frac{{\partial I}}{{\partial {p_i}}}\) and \(\frac{{\partial I}}{{\partial {q_i}}}\) are the same. In addition, the Hessian can be written as

$$\begin{aligned} {\widetilde{\mathbf{H}}_{\mathbf{p}}}I = E\left\{ {\frac{{{\partial ^2}I}}{{\partial {{\widetilde{\mathbf{p}}}^ * }\partial {{\widetilde{\mathbf{p}}}^T}}}} \right\} = E\left\{ {\left[ {\begin{array}{ccccc} {\frac{{{\partial ^2}I}}{{\partial p_1^ * \partial {p_1}}}}&{}{\frac{{{\partial ^2}I}}{{\partial p_1^ * \partial p_1^ * }}}&{} \ldots &{}{\frac{{{\partial ^2}I}}{{\partial p_1^ * \partial {p_N}}}}&{}{\frac{{{\partial ^2}I}}{{\partial p_1^ * \partial p_N^ * }}}\\ {\frac{{{\partial ^2}I}}{{\partial {p_1}\partial {p_1}}}}&{}{\frac{{{\partial ^2}I}}{{\partial {p_1}\partial p_1^ * }}}&{} \ldots &{}{\frac{{{\partial ^2}I}}{{\partial {p_1}\partial {p_N}}}}&{}{\frac{{{\partial ^2}I}}{{\partial {p_1}\partial p_N^ * }}}\\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ {\frac{{{\partial ^2}I}}{{\partial p_N^ * \partial {p_1}}}}&{}{\frac{{{\partial ^2}I}}{{\partial p_N^ * \partial p_1^ * }}}&{} \ldots &{}{\frac{{{\partial ^2}I}}{{\partial p_N^ * \partial {p_N}}}}&{}{\frac{{{\partial ^2}I}}{{\partial p_N^ * \partial p_N^ * }}}\\ {\frac{{{\partial ^2}I}}{{\partial {p_N}\partial {p_1}}}}&{}{\frac{{{\partial ^2}I}}{{\partial {p_N}\partial p_1^ * }}}&{} \ldots &{}{\frac{{{\partial ^2}I}}{{\partial {p_N}\partial {p_N}}}}&{}{\frac{{{\partial ^2}I}}{{\partial {p_N}\partial p_N^ * }}} \end{array}} \right] } \right\} \end{aligned}$$
(31)

and similar to (19), we reformulate the Hessian in (31) as

$$\begin{aligned} {\widetilde{\mathbf{H}}_{\mathbf{p}}}I= & {} E\left\{ {\left[ {\begin{array}{ccccc} {\frac{{{\partial ^2}I}}{{\partial p_1^ * \partial {p_1}}}}&{}{\frac{{{\partial ^2}I}}{{\partial p_1^ * \partial p_1^ * }}}&{} \ldots &{}{\frac{{{\partial ^2}I}}{{\partial p_1^ * \partial {p_N}}}}&{}{\frac{{{\partial ^2}I}}{{\partial p_1^ * \partial p_N^ * }}} \\ {\frac{{{\partial ^2}I}}{{\partial {q_1}\partial {q_1}}}}&{}{\frac{{{\partial ^2}I}}{{\partial {q_1}\partial q_1^ * }}}&{} \ldots &{}{\frac{{{\partial ^2}I}}{{\partial {q_1}\partial {q_N}}}}&{}{\frac{{{\partial ^2}I}}{{\partial {q_1}\partial q_N^ * }}} \\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ {\frac{{{\partial ^2}I}}{{\partial p_N^ * \partial {p_1}}}}&{}{\frac{{{\partial ^2}I}}{{\partial p_N^ * \partial p_1^ * }}}&{} \ldots &{}{\frac{{{\partial ^2}I}}{{\partial p_N^ * \partial {p_N}}}}&{}{\frac{{{\partial ^2}I}}{{\partial p_N^ * \partial p_N^ * }}} \\ {\frac{{{\partial ^2}I}}{{\partial {q_N}\partial {q_1}}}}&{}{\frac{{{\partial ^2}I}}{{\partial {q_N}\partial q_1^ * }}}&{} \ldots &{}{\frac{{{\partial ^2}I}}{{\partial {q_N}\partial {q_N}}}}&{}{\frac{{{\partial ^2}I}}{{\partial {q_N}\partial q_N^ * }}} \end{array}} \right] } \right\} \nonumber \\= & {} E\left\{ {\left[ {\begin{array}{ccccc} 0&{}{s_1^2c}&{} \ldots &{}0&{}{{s_1}{s_N}c}\\ {s{{_1^ * }^2}d}&{}0&{} \ldots &{}{s_1^ * s_N^ * d}&{}0\\ \vdots &{} \vdots &{} \ddots &{} \vdots &{} \vdots \\ 0&{}{{s_N}{s_1}c}&{} \ldots &{}0&{}{s_N^2c}\\ {s_N^ * s_1^ * d}&{}0&{} \ldots &{}{s{{_N^ * }^2}d}&{}0 \end{array}} \right] } \right\} \end{aligned}$$
(32)

Here, \(c = g'\left( {y{z^ * }} \right) {z^ * }^2\) and \(d = g'\left( {y{z^ * }} \right) {y^2}\).

Evaluating the gradient (30) and Hessian (32) at \({{\mathbf{p}}_1}\) and \({{\mathbf{q}}_1}\), we get

$$\begin{aligned} {\widetilde{\nabla }_{\mathbf{p}}}I\left( {{{\mathbf{p}}_1}} \right) = E\left( {\begin{array}{c} {E\left\{ {g\left( {{{\left| {{s_1}} \right| }^2}} \right) {{\left| {{s_1}} \right| }^2}} \right\} {e^{ - j\theta }}} \\ {E\left\{ {g\left( {{{\left| {{s_1}} \right| }^2}} \right) {{\left| {{s_1}} \right| }^2}} \right\} {e^{j\theta }}} \\ 0 \\ \vdots \\ 0 \end{array}} \right) \end{aligned}$$
(33)

and

$$\begin{aligned} {\widetilde{\mathbf{H}}_{\mathbf{p}}}I\left( {{{\mathbf{p}}_1}} \right) = E\left\{ {\left[ {\begin{array}{cccc} {{{\mathbf{B}}_1}}&{}0&{} \ldots &{}0\\ 0&{}{{{\mathbf{B}}_2}}&{} \ldots &{} \vdots \\ \vdots &{} \vdots &{} \ddots &{}0\\ 0&{} \ldots &{}0&{}{{{\mathbf{B}}_N}} \end{array}} \right] } \right\} \end{aligned}$$
(34)

where \({{\mathbf{B}}_1} = \left( {\begin{array}{cc} 0&{}{E\left\{ {{{\left| {{s_1}} \right| }^4}g'\left( {{{\left| {{s_1}} \right| }^2}} \right) } \right\} {e^{j2\theta }}} \\ {E\left\{ {{{\left| {{s_1}} \right| }^4}g'\left( {{{\left| {{s_1}} \right| }^2}} \right) } \right\} {e^{ - j2\theta }}}&{}0 \end{array}} \right) \) and \({{\mathbf{B}}_i} = \left( {\begin{array}{cc} 0 &{} {E\left\{ {s_i^2} \right\} E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) s{{_1^ * }^2}} \right\} {e^{j2\theta }}} \\ {E\left\{ {s{{_i^ * }^2}} \right\} E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) {s_1}^2} \right\} {e^{ - j2\theta }}}&{}0 \end{array}} \right) \).

Thirdly, we make a small perturbation \({{\varepsilon }} = {\left[ {\begin{array}{cccc} {{\varepsilon _1}}&{{\varepsilon _2}}&\ldots&{{\varepsilon _N}} \end{array}} \right] ^T}\) around the optimal solution \({{\mathbf{p}}_1}\) using the complex Taylor series expansion shown in [29] as

$$\begin{aligned} I\left( {{{\mathbf{p}}_1} + {{\varepsilon }},{{\mathbf{q}}_1}} \right)= & {} I\left( {{{\mathbf{p}}_1},{{\mathbf{q}}_1}} \right) + {\widetilde{{\varepsilon }}^T}{\widetilde{\nabla }_{\mathbf{p}}}I\left( {{{\mathbf{p}}_1},{{\mathbf{q}}_1}} \right) + \frac{1}{2}{\widetilde{{\varepsilon }}^H}{\widetilde{\mathbf{H}}_{\mathbf{p}}}I\left( {{{\mathbf{p}}_1},{{\mathbf{q}}_1}} \right) \widetilde{{\varepsilon }} + o\left( {{{\left\| {{\varepsilon }} \right\| }^2}} \right) \nonumber \\= & {} I\left( {{{\mathbf{p}}_1},{{\mathbf{q}}_1}} \right) + E\left\{ {g\left( {{{\left| {{s_1}} \right| }^2}} \right) {{\left| {{s_1}} \right| }^2}} \right\} \left( {{\varepsilon _1}{e^{ - j\theta }} + \varepsilon _1^ * {e^{j\theta }}} \right) \nonumber \\&+\, \frac{1}{2}E\left\{ {{{\left| {{s_1}} \right| }^4}g'\left( {{{\left| {{s_1}} \right| }^2}} \right) } \right\} \nonumber \\&\times \left( {{\varepsilon _1}^2{e^{ - j2\theta }} + \varepsilon _1^{ * 2}{e^{j2\theta }}} \right) \nonumber \\&+\, \frac{1}{2}\sum \limits _{i > 1}^N {\left( \begin{array}{l} \varepsilon _i^2E\left\{ {s_i^{ * 2}} \right\} E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) {s_1}^2} \right\} {e^{ - j2\theta }} \\ + \varepsilon _i^{ * 2}E\left\{ {s_i^2} \right\} E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) s_1^{ * 2}} \right\} {e^{j2\theta }} \end{array} \right) } + o\left( {{{\left\| {{\varepsilon }} \right\| }^2}} \right) \end{aligned}$$
(35)

Under the constraint \(\left\| {\mathbf{p}} \right\| = 1\), and using \({\left\| {{{\mathbf{p}}_1} + {{\varepsilon }}} \right\| ^2} = 1 + {\varepsilon _1}{e^{ - j\theta }} + \varepsilon _1^ * {e^{j\theta }} + {\sum \nolimits _{i = 1}^N {\left| {{\varepsilon _i}} \right| } ^2}\), we have

$$\begin{aligned}&{\varepsilon _1}{e^{ - j\theta }} + \varepsilon _1^* {e^{j\theta }} = - {\sum \nolimits _{i = 1}^N {\left| {{\varepsilon _i}} \right| } ^2} \Rightarrow {\left( {{\varepsilon _1}{e^{ - j\theta }} + \varepsilon _1^ * {e^{j\theta }}} \right) ^2} = {\left( { - {{\sum \nolimits _{i = 1}^N {\left| {{\varepsilon _i}} \right| } }^2}} \right) ^2} \nonumber \\&\quad \Rightarrow {\varepsilon _1}^2{e^{ - j2\theta }} + 2{\left| {{\varepsilon _1}} \right| ^2} + \varepsilon _1^{ * 2}{e^{j2\theta }} = {\left( {{{\sum \nolimits _{i = 1}^N {\left| {{\varepsilon _i}} \right| } }^2}} \right) ^2} \nonumber \\&\quad \Rightarrow {\varepsilon _1}^2{e^{ - j2\theta }} + \varepsilon _1^{ * 2}{e^{j2\theta }} = {\left( {{{\sum \nolimits _{i = 1}^N {\left| {{\varepsilon _i}} \right| } }^2}} \right) ^2} - 2{\left| {{\varepsilon _1}} \right| ^2} \end{aligned}$$
(36)

Substituting (36) into (35), we obtain

$$\begin{aligned} I\left( {{{\mathbf{p}}_1} + {{\varepsilon }},{{\mathbf{q}}_1}} \right)= & {} I\left( {{{\mathbf{p}}_1},{{\mathbf{q}}_1}} \right) - \sum \nolimits _{i = 1}^N {{{\left| {{\varepsilon _i}} \right| }^2}E\left\{ {g\left( {{{\left| {{s_1}} \right| }^2}} \right) {{\left| {{s_1}} \right| }^2}} \right\} } \nonumber \\&+\, \frac{1}{2}E\left\{ {{{\left| {{s_1}} \right| }^4}g'\left( {{{\left| {{s_1}} \right| }^2}} \right) } \right\} \left( {{{\left( {{{\sum \nolimits _{i = 1}^N {\left| {{\varepsilon _i}} \right| } }^2}} \right) }^2} - 2{{\left| {{\varepsilon _1}} \right| }^2}} \right) \nonumber \\&+\, \frac{1}{2}\sum \limits _{i > 1}^N {\left( \begin{array}{l} {\varepsilon _i}^2E\left\{ {s_i^{ * 2}} \right\} E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) {s_1}^2} \right\} {e^{ - j2\theta }} \\ + \varepsilon _i^{ * 2}E\left\{ {s_i^2} \right\} E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) s_1^{ * 2}} \right\} {e^{j2\theta }} \end{array} \right) } + o\left( {{{\left\| {{\varepsilon }} \right\| }^2}} \right) \nonumber \\= & {} I\left( {{{\mathbf{p}}_1},{{\mathbf{q}}_1}} \right) - {\left| {{\varepsilon _1}} \right| ^2}\left( {E\left\{ {g\left( {{{\left| {{s_1}} \right| }^2}} \right) {{\left| {{s_1}} \right| }^2}} \right\} + E\left\{ {{{\left| {{s_1}} \right| }^4}g'\left( {{{\left| {{s_1}} \right| }^2}} \right) } \right\} } \right) \nonumber \\&+\, \frac{1}{2}{\left( {{{\sum \nolimits _{i = 1}^N {\left| {{\varepsilon _i}} \right| } }^2}} \right) ^2}E\left\{ {{{\left| {{s_1}} \right| }^4}g'\left( {{{\left| {{s_1}} \right| }^2}} \right) } \right\} \nonumber \\&- \sum \limits _{i > 1}^N {{{\left| {{\varepsilon _i}} \right| }^2}E\left\{ {g\left( {{{\left| {{s_1}} \right| }^2}} \right) {{\left| {{s_1}} \right| }^2}} \right\} } \nonumber \\&+ \frac{1}{2}\sum \limits _{i > 1}^N {\left( \begin{array}{l} {\varepsilon _i}^2E\left\{ {s_i^{ * 2}} \right\} E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) {s_1}^2} \right\} {e^{ - j2\theta }}\\ + \varepsilon _i^{ * 2}E\left\{ {s_i^2} \right\} E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) s_1^{ * 2}} \right\} {e^{j2\theta }} \end{array} \right) } + o\left( {{{\left\| {{\varepsilon }} \right\| }^2}} \right) \end{aligned}$$
(37)

where the terms \({\left| {{\varepsilon _1}} \right| ^2}\) and \({\left( {{{\sum \nolimits _{i = 1}^N {\left| {{\varepsilon _i}} \right| } }^2}} \right) ^2}\) are of order \(o\left( {{{\left\| {{\varepsilon }} \right\| }^2}} \right) \) according to (36) and can be neglected, resulting in

$$\begin{aligned} I\left( {{{\mathbf{p}}_1} + {{\varepsilon }},{{\mathbf{q}}_1}} \right)= & {} I\left( {{{\mathbf{p}}_1},{{\mathbf{q}}_1}} \right) - \sum \limits _{i > 1}^N {{{\left| {{\varepsilon _i}} \right| }^2}E\left\{ {g\left( {{{\left| {{s_1}} \right| }^2}} \right) {{\left| {{s_1}} \right| }^2}} \right\} } \nonumber \\&+ \sum \limits _{i > 1}^N {{{\left| {{\varepsilon _i}} \right| }^2}\left| {E\left\{ {s_i^2} \right\} E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) s_1^{ * 2}} \right\} {e^{j2\theta }}} \right| } \cos \left( {{\varphi _i}} \right) + o\left( {{{\left\| {{\varepsilon }} \right\| }^2}} \right) \nonumber \\= & {} I\left( {{{\mathbf{p}}_1},{{\mathbf{q}}_1}} \right) + \sum \limits _{i > 1}^N {\left( \begin{array}{l} - E\left\{ {g\left( {{{\left| {{s_1}} \right| }^2}} \right) {{\left| {{s_1}} \right| }^2}} \right\} + \\ \left| {E\left\{ {s_i^2} \right\} E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) s_1^{ * 2}} \right\} {e^{j2\theta }}} \right| \cos \left( {{\varphi _i}} \right) \end{array} \right) {{\left| {{\varepsilon _i}} \right| }^2}} \nonumber \\&+\, o\left( {{{\left\| {{\varepsilon }} \right\| }^2}} \right) \end{aligned}$$
(38)

where \({\varphi _i} = \arg \left( {\varepsilon _i^{ * 2}} \right) + \arg \left( {E\left\{ {s_i^2} \right\} } \right) + \arg \left( {E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) s_1^{ * 2}} \right\} {e^{j2\theta }}} \right) \) is some arbitrary phase shift that results from

$$\begin{aligned}&{\varepsilon _i}^2E\left\{ {s_i^{ * 2}} \right\} E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) {s_1}^2} \right\} {e^{ - j2\theta }} + \varepsilon _i^{ * 2}E\left\{ {s_i^2} \right\} E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) s_1^{ * 2}{e^{j2\theta }}} \right\} \nonumber \\&\quad = {\left( {\varepsilon _i^{ * 2}E\left\{ {s_i^2} \right\} E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) s_1^{ * 2}} \right\} {e^{j2\theta }}} \right) ^ * } + \left( {\varepsilon _i^{ * 2}E\left\{ {s_i^2} \right\} E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) s_1^{ * 2}{e^{j2\theta }}} \right\} } \right) \nonumber \\&\quad = 2\left| {\varepsilon _i^{ * 2}E\left\{ {s_i^2} \right\} E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) s_1^{ * 2}{e^{j2\theta }}} \right\} } \right| \cos \left( {{\varphi _i}} \right) \nonumber \\&\quad = 2\left| {\varepsilon _i^{ * 2}} \right| \left| {E\left\{ {s_i^2} \right\} E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) s_1^{ * 2}{e^{j2\theta }}} \right\} } \right| \cos \left( {{\varphi _i}} \right) \nonumber \\&\quad = 2\left| {{\varepsilon _i}^2} \right| \left| {E\left\{ {s_i^2} \right\} E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) s_1^{ * 2}{e^{j2\theta }}} \right\} } \right| \cos \left( {{\varphi _i}} \right) \end{aligned}$$
(39)

where the identity \(\mathrm{Z} + {\mathrm{Z}^ * } = 2{\mathrm{Z}^R} = 2\left| \mathrm{Z} \right| \cos \left[ {\arg \left( \mathrm{Z} \right) } \right] \) is used, in which \(\mathrm{Z} = \varepsilon _i^{ * 2}E\left\{ {s_i^2} \right\} E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) s_1^{ * 2}{e^{j2\theta }}} \right\} \). The term \(\cos \left( {{\varphi _i}} \right) \in \left[ { - 1,1} \right] \) for any perturbation \({\varepsilon _i}\), resulting in the conditions for a local minimum (respectively, maximum) as

$$\begin{aligned} - E\left\{ {g\left( {{{\left| {{s_1}} \right| }^2}} \right) {{\left| {{s_1}} \right| }^2}} \right\} \pm \left| {E\left\{ {s_i^2} \right\} E\left\{ {g'\left( {{{\left| {{s_1}} \right| }^2}} \right) s_1^{ * 2}} \right\} {e^{j2\theta }}} \right| > 0,\, \left( {resp. < 0} \right) \end{aligned}$$
(40)

which must be satisfied for each source \({s_i}\), where \(i = \left[ {2,3, \ldots ,N} \right] \).

Finally, the local stability of our reference-based negentropy has been proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Shen, Y., Xu, P. et al. Efficient Optimization of Reference-Based Negentropy for Noncircular Sources in Complex ICA. Circuits Syst Signal Process 35, 4390–4412 (2016). https://doi.org/10.1007/s00034-016-0274-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0274-y

Keywords

Navigation