Skip to main content
Log in

Compressed Sensing Based on Trust Region Method

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Developed in recent years, compressed sensing (CS) has saved considerable data storage and time in signal acquisition and processing, drawing the attention of many scholars in various fields. At present, a key issue is the design of an effective CS reconstruction algorithm. Unlike the commonly used CS convex optimization approaches, which require determining the direction first and later using the linear search to attain the optimal displacement, the trust region method introduced into the CS model in this paper solves a quadratic convex optimization problem in the varied circular area. The simulated reconstruction of two-dimensional images is performed via MATLAB. Meanwhile, comparative analysis is executed using different CS reconstruction methods, such as the greedy algorithms (orthogonal matching pursuit, sparse adaptive matching pursuit) and convex optimization algorithms (basis pursuit, conjugate gradient). The experimental results are summarized and analyzed, demonstrating that the proposed CS trust region method may recover the images more accurately than state-of-the-art schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Bilen, G. Puy, R. Gribonval, L. Daudet, Convex optimization approaches for blind sensor calibration using sparsity. IEEE Trans. Inform. Theory 62(18), 4847–4856 (2014)

    MathSciNet  Google Scholar 

  2. S.S. Cai, J.W. Zhang, D.H. Feng, M. Bao, Improved regularized orthogonal matching pursuit method used in estimation of directions of arrival. Acta Acust. United Ac. 39(1), 35–41 (2014)

  3. E.J. Candés, The restricted isometry property and its implications for compressed sensing. C. R. Math. 346(9–10), 589–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. E.J. Candés, T. Tao, Near optional signal recovery from random projections: universal encoding strategies. IEEE Trans. Inform. Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. J.S. Chen, The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem. J. Glob. Optim. 36(4), 565–580 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Dai, O. Milenkovic, Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inform. Theory 55(5), 2230–2249 (2009)

    Article  MathSciNet  Google Scholar 

  7. W. Dan, R.H. Wang, Robustness of orthogonal matching pursuit under restricted isometry property. Sci. China Math. 57(3), 627–634 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. D.L. Donoho, Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. H.T. Fabich, M. Benning, A.J. Sederman, D.J. Holland, Ultrashort echo time (UTE) imaging using gradient pre-equalization and compressed sensing. J. Magn. Reson. 245, 116–124 (2014)

    Article  Google Scholar 

  10. A.C. Gilbert, S. Muthukrishnan, M.J. Strauss, Improved time bounds for near optimal sparse Fourier representations, in Proceedings of SPIE, Wavelets XI[C], vol. 5914 (International Society for Optical Engineering, Bellingham, 2005), pp. 1–15

  11. M.R. Hestenes, Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  12. B.X. Huang, T. Zhou, Recovery of block sparse signals by a block version of StOMP. Signal Process. 106, 231–244 (2015)

    Article  Google Scholar 

  13. X.L. Huang, Y.P. Liu, L. Shi, V.H. Sabine, J.A.K. Suykens, Two-level \(l_{1}\) minimization for compressed sensing. Signal Process. 108, 459–475 (2015)

    Article  Google Scholar 

  14. C. Kanzow, Some noninterior continuation methods for linear complementarity problems. SIAM J. Matrix Anal. Appl. 17, 851–868 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. S.J. Kim, K. Koh, M. Lustig, D. Gorinevsky, A method for large scale regularized least squares. IEEE J. STSP 4(1), 606–617 (2007)

    Google Scholar 

  16. P.T. Lauzier, J. Tang, G.H. Chen, Prior image constrained compressed sensing: implementation and performance evaluation. Med. Phys. 39(1), 66–80 (2012)

    Article  Google Scholar 

  17. H.F. Li, Y.L. Fu, Q.H. Zhang, R. Rong, A generalized hard thresholding pursuit algorithm. Circuits Syst. Signal Process. 33(4), 1313–1323 (2014)

    Article  MathSciNet  Google Scholar 

  18. S.L. Li, K. Liu, F. Zhang, L. Zhang, L.L. Xiao, D.P. Han, Innovative remote sensing imaging method based on compressed sensing. Opt. Laser Technol. 63, 83–89 (2014)

    Article  Google Scholar 

  19. Y.B. Liu, N. Li, R. Wang, Y.K. Deng, Achieving high quality three dimensional InISAR imageries of maneuvering target via super-resolution ISAR imaging by exploiting sparseness. IEEE Geosci. Remote Sens. 11(4), 828–832 (2014)

    Article  Google Scholar 

  20. Y.W. Liu, J.F. Hu, A neural network for l1-l2 minimization based on scaled gradient projection: application to compressed sensing. Neurocomputing 173, 988–993 (2015)

  21. W.T. Lv, J.F. Wang, W.X. Yu, Z. Tan, Improvement of semi-random measurement matrix for compressed sensing. IEICE Trans. Fundam. Electron. E97A(6), 1426–1429 (2014)

    Article  Google Scholar 

  22. A. Majumdar, R.K. Ward, T. Aboulnasr, Algorithms to approximately solve NP hard row-sparse MMV recovery problem: application to compressive color imaging. JETCAS 2(3), 362–369 (2014)

    Google Scholar 

  23. D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Commun. ACM 26(3), 301–321 (2009)

    MathSciNet  MATH  Google Scholar 

  24. T.T. Qiao, W.G. Li, B.Y. Wu, A new algorithm based on linearized bregman iteration with generalized inverse for compressed sensing. Circ. Syst. Signal Process. 33(5), 1527–1539 (2014)

    Article  MathSciNet  Google Scholar 

  25. Sanjit K. Mitra, Digital Signal Processing (McGraw-Hill Science/Engineering/Math, New York, 2005)

    Google Scholar 

  26. D. Sundman, S. Chatterjee, M. Skoglund, Distributed greedy pursuit algorithms. Signal Process. 105, 298–315 (2014)

    Article  Google Scholar 

  27. J.G. Yang, T. Jin, X.T. Huang, J. Thompson, Z.M. Zhou, Sparse MIMO array forward-looking GPR imaging based on compressed sensing in clutter environment. IEEE Trans. Geosci. Remote 52(7), 4480–4494 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This investigation is supported by the National Natural Science Foundation of China under Grant Nos. 61202051 and 41371422 and supported by the Special Fund for Basic Scientific Research of Central Colleges, China University of Geosciences (Wuhan) under Grant No. CUG130416.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuqiao Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xiang, X., Zhou, S. et al. Compressed Sensing Based on Trust Region Method. Circuits Syst Signal Process 36, 202–218 (2017). https://doi.org/10.1007/s00034-016-0299-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0299-2

Keywords

Navigation