Skip to main content
Log in

Sparsity-Based Direct Data Domain Space-Time Adaptive Processing with Intrinsic Clutter Motion

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a sparsity-based direct data domain space-time adaptive processing (D3-STAP) algorithm for airborne radar that considers the intrinsic clutter motion (ICM). The proposed D3-STAP scheme models the received returns in the presence of ICM as a sparse measurement model. Then, we derive the principle of the sparsity-based D3-STAP that uses the focal underdetermined system solution (FOCUSS) method. The proposed D3-STAP algorithm estimates the clutter covariance matrix by a Hadamard product of the covariance matrix taper (CMT) and the clutter covariance matrix estimate with the FOCUSS technique. In addition, we develop a CMT adaptation approach for the proposed D3-STAP algorithm to automatically select the best CMT. Simulation results show that the proposed algorithm outperforms the existing D3-STAP using the least-squares technique and the sparsity-based D3-STAP algorithm without CMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The clutter rank can be estimated by counting the number of resolution grids that are occupied by the significant clutter spectrum components [28], which shows a prove for the conclusion in [33].

  2. Note that the above equation makes use of the fact that \(\left( \mathbf{A} \odot \mathbf{B}\right) \left( \mathbf{C} \odot \mathbf{D}\right) ^H = \left( \mathbf{A} \mathbf{C}^H\right) \odot \left( \mathbf{B} \mathbf{D}^H\right) ,\) where \(\mathbf{A}, \mathbf{B}\) are \(g \times h\) and \(\mathbf{C}, \mathbf{D}\) are \(e \times h\) matrices [7].

  3. This assumption is also seen in CMT methods developed by Guerci in [8].

  4. This is where we exploit both the orthogonality of \(\mathbf{Q}\) and the white Gaussianity of the thermal noise.

  5. Significant elements are defined by those whose powers are higher than the thermal noise level.

  6. Regarding the FOCUSS algorithm, the MATLAB code can be downloaded at http://dsp.ucsd.edu/~zhilin/MFCOUSS.m.

References

  1. E. Aboutanios, B. Mulgrew, A STAP algorithm for radar target detection in heterogeneous environments, in IEEE Workshop Statist. Signal Process.(2005), pp. 966–971

  2. E. Aboutanios, B. Mulgrew, Hybrid detection approach for STAP in heterogeneous clutter. IEEE Trans. Aerosp. Electron. Syst. 46, 1021–1033 (2010)

    Article  Google Scholar 

  3. S.F. Cotter, B.D. Rao, K. Engan, K. Kreutz-Delgado, Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 53, 2477–2488 (2005)

    Article  MathSciNet  Google Scholar 

  4. J.-F. Degurse, L. Savy, S. Marcos, Reduced-rank STAP for target detection in heterogeneous environments. IEEE Trans. Aerosp. Electron. Syst. 50, 1153–1162 (2014)

    Article  Google Scholar 

  5. J.-F. Degurse, L. Savy, S. Marcos, J.-P. Molini, Deterministic aided STAP for target detection in heterogeneous situations. Int. J. Antennas Propagat. (2013). doi:10.1155/2013/826935

  6. M. Elad, Why simple shrinkage is still relevant for redundant representations? IEEE Trans. Inf. Theory 52, 5559–5569 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.R. Guerci, Space-Time Adaptive Processing for Radar (Artech House, London, 2003)

    Google Scholar 

  8. J.R. Guerci, Theory and application of covariance matrix tapers for robust adaptive beamforming. IEEE Trans. Signal Process. 47, 977–985 (1999)

    Article  Google Scholar 

  9. J.R. Guerci, E.J. Baranoski, Knowledge-aided adaptive radar at DARPA: an overview. IEEE Signal Process. Mag. 23, 41–50 (2006)

    Article  Google Scholar 

  10. J.R. Guerci, J.S. Bergin, Principal components, covariance matrix tapers, and the subspace leakage problem. IEEE Trans. Aerosp. Electron. Syst. 38, 152–162 (2002)

    Article  Google Scholar 

  11. J.S. Goldstein, I.S. Reed, Theory of partially adaptive radar. IEEE Trans. Aerosp. Electron. Syst. 33, 1309–1325 (1997)

    Article  Google Scholar 

  12. I.F. Gorodnitsky, B.D. Rao, Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45, 600–616 (1997)

    Article  Google Scholar 

  13. R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985)

    Book  MATH  Google Scholar 

  14. R. Klemm, Principles of Space-Time Adaptive Processing (Institute of Electrical Engineering, London, UK, 2006)

    Book  Google Scholar 

  15. J. Li, X. Zhu, P. Stoica, M. Rangaswamy, High resolution angle-Doppler imaging for MTI radar. IEEE Trans. Aerosp. Electron. Syst. 46, 1544–1556 (2010)

    Article  Google Scholar 

  16. S. Maria, J. J. Fuchs, Application of the global matched filter to STAP data an efficient algorithmic approach, in IEEE International Conference on Acoustics, Speech and Signal Processing (2006), pp.14–19

  17. W.L. Mevin, G.A. Showman, An approach to knowledge-aided covariance estimation. IEEE Trans. Aerosp. Electron. Syst. 42, 1021–1042 (2006)

    Article  Google Scholar 

  18. J.T. Parker, L.C. Potter, A Bayesian perspective on sparse regularization for STAP post-processing, in IEEE Radar Conference (2010), pp. 1471–1475

  19. B.D. Rao, K. Engan, S.F. Cotter, J. Palmer, K. Kreutz-Delgado, Subset selection in noise based on diversity measure minimization. IEEE Trans. Signal Process. 51, 760–770 (2003)

    Article  Google Scholar 

  20. J.R. Roman, M. Rangaswamy, D.W. Davis, Q. Zhang, B. Himed, J.H. Michels, Parametric adaptive matched filter for airborne radar applications. IEEE Trans. Aerosp. Electron. Syst. 36, 677–692 (2000)

    Article  Google Scholar 

  21. S. Sen, OFDM radar space-time adaptive processing by exploiting spatio-temporal sparsity. IEEE Trans. Signal Process. 61, 118–130 (2013)

    Article  MathSciNet  Google Scholar 

  22. K. Sun, H. Meng, Y. Wang, X. Wang, Direct data domain STAP using sparse representation of clutter spectrum. Signal Process. 91, 2222–2236 (2011)

    Article  MATH  Google Scholar 

  23. I.W. Selesnick, S.U. Pillai, K.Y. Li, B. Himed, Angle-Doppler processing using sparse regularization, in IEEE International Conference on Acoustics, Speech and Signal Processing (2010), pp. 2750–2753

  24. T.K. Sarkar, H. Wang, S. Park, R. Adve, J. Koh, K. Kim, Y. Zhang, M.C. Wicks, R.D. Brown, A deterministic least-squares approach to space-time adaptive processing (STAP). IEEE Trans. Antennas Propagat. 49, 91–103 (2001)

    Article  MATH  Google Scholar 

  25. K. Sun, H. Zhang, G. Li, H. Meng, X. Wang, A novel STAP algorithm using sparse recovery technique, in IGARSS (2009), pp. 336–339

  26. J. Ward, Space-Time Adaptive Processing for Airborne Radar. Technical Report (MIT Lincoln laboratory, Lexington, MA, 1994). 1015

    Google Scholar 

  27. M.C. Wicks, M. Rangaswamy, R. Adve, T.B. Hale, Space-time adaptive processing: a knowledge-based perspective for airborne radar. IEEE Signal Process. Mag. 23, 51–65 (2006)

    Article  Google Scholar 

  28. Y. Wu, J. Tang, Y. Peng, On the essence of knowledge-aided clutter covariance estimate and its convergence. IEEE Trans. Aerosp. Electron. Syst. 47, 569–585 (2011)

    Article  Google Scholar 

  29. T. Xia, Y. Zheng, Q. Wan, X. Wang, Adaptive regularized FOCUSS algorithm, in IEEE Radar Conference (2007), pp. 282–284

  30. E. Yang, R. Adve, J. Chun, J. Chun, Hybrid direct data domain sigma-delta space-time adaptive processing algorithm in non-homogeneous clutter. IET Radar Sonar Navig. 4, 611–625 (2010)

    Article  Google Scholar 

  31. Z. Yang, X. Li, H. Wang, Performance analysis of STAP algorithms based on fast sparse recovery techniques. Progr. Electromagn. Res. B 41, 251–268 (2012)

    Article  Google Scholar 

  32. Z. Yang, X. Li, H. Wang, W. Jiang, Adaptive clutter suppression based on iterative adaptive approach for airborne radar. Signal Process. 93, 3567–3577 (2013)

    Article  Google Scholar 

  33. Z. Yang, X. Li, H. Wang, W. Jiang, On clutter sparsity analysis in space-time adaptive processing airborne radar. IEEE Geosci Remote Sens. Lett. 10, 1214–1218 (2013)

    Article  Google Scholar 

  34. Z. Yang, X. Li, H. Wang, L. Nie, Sparsity-based space-time adaptive processing using complex-valued homotopy technique for airborne radar. IET Signal Process. 8, 552–564 (2014)

    Article  Google Scholar 

  35. Z. Yang, R.C. de Lamare, X. Li, \(L_1\)-regularized STAP algorithms with a generalized sidelobe canceler architecture for airborne radar. IEEE Trans. Signal Process. 60, 674–686 (2012)

    Article  MathSciNet  Google Scholar 

  36. Z. Yang, R.C. de Lamare, X. Li, Sparsity-aware space-time adaptive processing algorithms with \(L_1\)-norm regularization for airborne radar. IET Signal Process. 6, 413–423 (2012)

    Article  MathSciNet  Google Scholar 

  37. M. Zatman, Comments on Theory and application of covariance matrix tapers for robust adaptive beamforming. IEEE Trans. Signal Process. 48, 1796–1800 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded in part by National Natural Science Foundation of China under Grant 61401478.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaocheng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Qin, Y., de Lamare, R.C. et al. Sparsity-Based Direct Data Domain Space-Time Adaptive Processing with Intrinsic Clutter Motion. Circuits Syst Signal Process 36, 219–246 (2017). https://doi.org/10.1007/s00034-016-0301-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0301-z

Keywords

Navigation