Skip to main content
Log in

Blind Spectral Signal Deconvolution with Sparsity Regularization: An Iteratively Reweighted Least-Squares Solution

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Spectral signals often suffer from the common problems of band overlap and random Gaussian noise. To address these problems, we propose a sparsity regularization-based model that deconvolutes the degraded spectral signals. Sparsity regularization is achieved by fitting the probability density function of the gradient of the signal, and then, the iteratively reweighted least-squares method is used to solve the minimization problem. Results from experiments using real spectral signals showed that this algorithm separates the overlapping peaks and effectively suppresses the noise. The deconvoluted spectral signals will promote the practical application of infrared spectral analysis in the fields of target recognition, material identification, and chemometrics analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://www.bruker.com/products/infrared-near-infrared-and-raman-spectroscopy.html.

References

  1. F. Alsmeyer, W. Marquardt, Automatic generation of peak-shaped models. Appl. Spectrosc. 58(8), 986–994 (2004)

    Article  Google Scholar 

  2. R. Bhargava, Infrared spectroscopic imaging: the next generation. Appl. Spectrosc. 66(10), 1091–1120 (2012)

    Article  Google Scholar 

  3. R.E. Carrillo, K.E. Barner, Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements. in Information Sciences and Systems, 2009. CISS 2009. 43rd Annual Conference on, 18–20 March 2009 2009, pp. 448–453

  4. P.A. Jansson, Deconvolution of images and spectra (Academic Press, New York, 1997)

    Google Scholar 

  5. J.K. Kauppinen, D.J. Moffatt, H.H. Mantsch, D.G. Cameron, Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Appl. Spectrosc. 35(3), 271–276 (1981)

    Article  Google Scholar 

  6. V.A. Lórenz-Fonfría, E. Padrós, Maximum entropy deconvolution of infrared spectra: use of a novel entropy expression without sign restriction. Appl. Spectrosc. 59(4), 474–486 (2005)

    Article  Google Scholar 

  7. V.A. Lórenz-Fonfría, E. Padrós, The role and selection of the filter function in fourier self-deconvolution revisited. Appl. Spectrosc. 63(7), 791–799 (2009)

    Article  Google Scholar 

  8. A. Levin, R. Fergus, F.D. Durand, W.T. Freeman, Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 26(3), 70 (2007). doi:10.1145/1276377.1276464

    Article  Google Scholar 

  9. H. Liu, T. Zhang, L. Yan, H. Fang, Y. Chang, A MAP-based algorithm for spectroscopic semi-blind deconvolution. Analyst 137(16), 3862–3873 (2012)

    Article  Google Scholar 

  10. H. Liu, Z. Zhang, J. Sun, S. Liu, Blind spectral deconvolution algorithm for Raman spectrum with Poisson noise. Photon. Res. 2(6), 168–171 (2014). doi:10.1364/PRJ.2.000168

    Article  Google Scholar 

  11. H. Liu, Z. Zhang, S. Liu, J. Shu, T. Liu, L. Yan, T. Zhang, Spectral blind deconvolution with differential entropy regularization for infrared spectrum. Infrared Phys. Technol. 71, 481–491 (2015)

    Article  Google Scholar 

  12. H. Liu, Z. Zhang, S. Liu, J. Shu, T. Liu, T. Zhang, Blind spectrum reconstruction algorithm with L0-sparse representation. Meas. Sci. Technol. 26(8), 085502 (2015)

    Article  Google Scholar 

  13. H. Liu, Z. Zhang, S. Liu, L. Yan, T. Liu, T. Zhang, Joint baseline-correction and denoising for Raman spectra. Appl. Spectrosc. 69(9), 1013–1022 (2015)

    Article  Google Scholar 

  14. H. Liu, M. Zhou, Z. Zhang, J. Shu, T. Liu, T. Zhang, Multi-order blind deconvolution algorithm with adaptive Tikhonov regularization for infrared spectroscopic data. Infrared Phys. Technol. 71, 63–69 (2015)

    Article  Google Scholar 

  15. H. Liu, Z. Zhang, S. Liu, J. Shu, T. Liu: Parametric spectral signal restoration via maximum entropy constraint and its application. Paper presented at the 2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE), Salt Lake City, Utah, USA, August 9–12, 2015

  16. V.A. Lorenz-Fonfria, E. Padros, Curve-fitting overlapped bands: quantification and improvement of curve-fitting robustness in the presence of errors in the model and in the data. Analyst 129(12), 1243–1250 (2004)

    Article  Google Scholar 

  17. J. Ma, J. Zhao, J. Tian, A.L. Yuille, Z. Tu, Robust point matching via vector field consensus. IEEE Trans. Image Process. 23(4), 1706–1721 (2014). doi:10.1109/TIP.2014.2307478

    Article  MathSciNet  Google Scholar 

  18. J. Ma, W. Qiu, J. Zhao, Y. Ma, A.L. Yuille, Z. Tu, Robust L2E estimation of transformation for non-rigid registration. Signal Process. IEEE Trans. 63(5), 1115–1129 (2015). doi:10.1109/TSP.2014.2388434

    Article  MathSciNet  Google Scholar 

  19. J. Ma, J. Zhao, Y. Ma, J. Tian, Non-rigid visible and infrared face registration via regularized Gaussian fields criterion. Pattern Recogn. 48(3), 772–784 (2015). doi:10.1016/j.patcog.2014.09.005

    Article  Google Scholar 

  20. L.J. Meng, D. Ramsden, An inter-comparison of three spectral-deconvolution algorithms for gamma-ray spectroscopy. Nucl. Sci. IEEE Trans. 47(4), 1329–1336 (2000)

    Article  Google Scholar 

  21. NASA: Absorption Spectral Data of Cr:LiSAF Crystal. http://aesd.larc.nasa.gov/gl/laser/spectra/spectra.htm

  22. J. Ottaway, J.H. Kalivas, E. Andries, Spectral multivariate calibration with wavelength selection using variants of tikhonov regularization. Appl. Spectrosc. 64(12), 1388–1395 (2010)

    Article  Google Scholar 

  23. S. Roques, K. Bouyoucef, L. Touzillier, J. Vigneau, Prior knowledge and multiscaling in statistical estimation of signal-to-noise ratio—application to deconvolution regularization. Signal Process. 41(3), 395–401 (1995)

    Article  MATH  Google Scholar 

  24. Y. Senga, K. Minami, S. Kawata, S. Minami, Estimation of spectral slit width and blind deconvolution of spectroscopic data by homomorphic filtering. Appl. Opt. 23(10), 1601–1608 (1984)

    Article  Google Scholar 

  25. Y. Sun, C. Ridge, F. del Rio, A.J. Shaka, J. Xin, Postprocessing and sparse blind source separation of positive and partially overlapped data. Signal Process. 91(8), 1838–1851 (2011)

    Article  MATH  Google Scholar 

  26. M. Van Droogenbroeck, Generalized iterative algorithm for spectral signal deconvolution, in Signal Processing, ed. by J.V.B. Moonen, A. Oosterlinck (Elsevier, Oxford, 1992), pp. 1389–1392

    Chapter  Google Scholar 

  27. Q. Wang, D.D. Allred, L.V. Knight, Deconvolution of the Raman Spectrum of amorphous carbon. J. Raman Spectrosc. 26(5), 1039–1043 (1995)

    Article  Google Scholar 

  28. L. Yan, H. Liu, S. Zhong, H. Fang, Semi-blind spectral deconvolution with adaptive Tikhonov regularization. Appl. Spectrosc. 66(11), 1334–1346 (2012)

    Article  Google Scholar 

  29. J. Yuan, Z. Hu, G. Wang, Z. Xu, Constrained high-order statistical blind deconvolution of spectral data. Chin. Opt. Lett. 3(9), 552–555 (2005)

    Google Scholar 

  30. J. Yuan, Z. Hu, High-order statistical blind deconvolution of spectroscopic data with a Gauss-Newton algorithm. Appl. Spectrosc. 60(6), 692–697 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the editor and anonymous reviewers for their valuable suggestions. This research was partially funded by the National Natural Science Foundation of China under Grant (No. 61505064), the National Social Science Fund of China (14BGL131), the Project of the Program for National Key Technology Research and Development Program (2013BAH18F01, 2014BAH22F01, 2015BAK07B03), the Self-Determined Research Funds of CCNU from the Colleges’ Basic Research and Operation of MOE (CCNU15A05009, CCNU15A05010, CCNU15A05059), and the Project of the Program for National Key Technology Research and Development Program (2013BAH72B01, 2013BAH18F02, 2015BAH33F02). The authors sincerely thank Prof. Yuan Jinghe for his helpful discussions and providing the source codes of FSD and HOS methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Huang.

Additional information

Hai Liu and Zhaoli Zhang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Yan, L., Huang, T. et al. Blind Spectral Signal Deconvolution with Sparsity Regularization: An Iteratively Reweighted Least-Squares Solution. Circuits Syst Signal Process 36, 435–446 (2017). https://doi.org/10.1007/s00034-016-0318-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0318-3

Keywords

Navigation