Skip to main content
Log in

A Flash ADC Tolerant to High Offset Voltage Comparators

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A conventional flash analog-to-digital converter (ADC) with a Wallace tree encoder ensures monotonicity and avoids missing codes, but still requires comparators with low offset voltage, which implies high area and power consumption. In this paper, we extend the purpose of this flash implementation, to allow the comparators to have extremely high offset voltages. This leads to a new approach toward the design of a flash ADC that does not require any type of calibration, allow easy porting among technologies and benefits from scaling. A statistical study is presented to demonstrate the effectiveness of the new method, and a modification is proposed to ensure full-range operation. It is shown that a proposed N-bit ADC has a performance equivalent to an \((N-m)\)-bit conventional flash ADC, with considerable gains in area and power consumption, with less design effort. The design flow of the OST ADC, with the necessary steps, is presented. A circuit, employing minimum dimension transistors, was fabricated in 0.13-\({\upmu }\hbox {m}\) CMOS and used as a proof of concept for the ADCs proposed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. S. Akiyama, T. Waho, A 6-bit low-power compact flash ADC using current-mode threshold logic gates, in 2006 IEEE International Symposium on Circuits and Systems, 21–24 May 2006, p. 4. doi: 10.1109/iscas.2006.1693490

  2. M. Ceekala, K. El-Sankary, E. El-Masry, Stochastic ADC with random U-quadratic distributed reference voltages to uniformly distribute comparators trip point. Analog Integr. Circuits Signal Process. 74(2), 461–465 (2013). doi:10.1007/s10470-012-9996-3

    Article  Google Scholar 

  3. H.Y. Chang, C.Y. Yang, A high-speed low-power calibrated flash ADC, in 2014 IEEE International Symposium on Circuits and Systems (ISCAS), 1–5 June 2014, pp. 2369–2372. doi: 10.1109/iscas.2014.6865648

  4. D.C. Daly, A.P. Chandrakasan, A 6-bit, 0.2 V to 0.9 V highly digital flash ADC with comparator redundancy. IEEE J. Solid-State Circuits 44(11), 3030–3038 (2009). doi:10.1109/jssc.2009.2032699

    Article  Google Scholar 

  5. P.G. Drennan, C.C. McAndrew, Understanding MOSFET mismatch for analog design. IEEE J. Solid-State Circuits 38(3), 450–456 (2003). doi:10.1109/jssc.2002.808305

    Article  Google Scholar 

  6. P.M. Figueiredo, J.C. Vital, Low kickback noise techniques for CMOS latched comparators, in Proceedings of the 2004 International Symposium on Circuits and Systems, 2004. ISCAS ’04, vol 531, 23–26 May 2004, pp. I-537–I-540. doi: 10.1109/iscas.2004.1328250

  7. M.P. Flynn, C. Donovan, L. Sattler, Digital calibration incorporating redundancy of flash ADCs. IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process. 50(5), 205–213 (2003). doi:10.1109/tcsii.2003.811435

    Article  Google Scholar 

  8. M. Goswami, D.M. Varma, Saloni, B.R. Singh, Reduced comparator high speed low power ADC using 90 nm CMOS technology. Analog Integr. Circuits Signal Process. 74(1), 267–278 (2013). doi:10.1007/s10470-012-9959-8

    Article  Google Scholar 

  9. B.V. Hieu, S. Choi, J. Seon, Y. Oh, C. Park, J. Park, H. Kim, T. Jeong, A new approach to thermometer-to-binary encoder of flash ADCs-bubble error detection circuit, in 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), 7–10 August 2011, pp. 1–4. doi: 10.1109/mwscas.2011.6026403

  10. G. Keskin, J. Proesel, J.O. Plouchart, L. Pileggi, Exploiting combinatorial redundancy for offset calibration in flash ADCs. IEEE J. Solid-State Circuits 46(8), 1904–1918 (2011). doi:10.1109/jssc.2011.2157255

    Article  Google Scholar 

  11. Y.Z. Lin, C.W. Lin, S.J. Chang, A 5-bit 3.2-GS/s flash ADC with a digital offset calibration scheme. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18(3), 509–513 (2010). doi:10.1109/tvlsi.2009.2013628

    Article  Google Scholar 

  12. B. Murmann, ADC Performance Survey 1997–2015 [Online]. http://www.stanford.edu/~murmann/adcsurvey.html

  13. M.J.M. Pelgrom, A.C.J. Duinmaijer, A.P.G. Welbers, Matching properties of MOS transistors. IEEE J. Solid-State Circuits 24(5), 1433–1439 (1989). doi:10.1109/jssc.1989.572629

    Article  Google Scholar 

  14. P. Pereira, J.R. Fernandes, M.M. Silva, Wallace tree encoding in folding and interpolation ADCs, in IEEE International Symposium on Circuits and Systems, 2002. ISCAS 2002, vol 501 (2002), pp. I-509–I-512. doi: 10.1109/iscas.2002.1009889

  15. E. Sall, M. Vesterbacka, Thermometer-to-binary decoders for flash analog-to-digital converters, in 18th European Conference on Circuit Theory and Design, 2007. ECCTD 2007, 27–30 August 2007, pp. 240–243. doi: 10.1109/ecctd.2007.4529581

  16. Y.S. Shu, A 6b 3GS/s 11 mW fully dynamic flash ADC in 40 nm CMOS with reduced number of comparators, in 2012 Symposium on VLSI Circuits (VLSIC), 13–15 June 2012, pp. 26–27. doi: 10.1109/vlsic.2012.6243772

  17. L. Sumanen, M. Waltari, K. Halonen, A mismatch insensitive CMOS dynamic comparator for pipeline A/D converters, in The 7th IEEE International Conference on Electronics, Circuits and Systems, 2000. ICECS 2000, vol 31 (2000), pp. 32–35. doi: 10.1109/icecs.2000.911478

  18. C.S. Wallace, A suggestion for a fast multiplier. IEEE Trans. Electr. Comput. EC–13(1), 14–17 (1964). doi:10.1109/pgec.1964.263830

    Article  MATH  Google Scholar 

  19. A. Waters, S. Leuenberger, F. Farahbakhshian, U.K. Moon, Analysis and performance trade-offs of linearity calibration for stochastic ADCs, in 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2014, 7–10 December 2014, pp. 207–210. doi: 10.1109/icecs.2014.7049958

  20. S. Weaver, B. Hershberg, P. Kurahashi, D. Knierim, U.K. Moon, Stochastic flash analog-to-digital conversion. IEEE Trans. Circuits Syst. I Regul. Pap. 57(11), 2825–2833 (2010). doi:10.1109/tcsi.2010.2050225

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been supported by FCT, Fundação para a Ciência e a Tecnologia (Portugal), under projects PEst-OE/EEI/LA0021/2013 and DISRUPTIVE (EXCL/EEI-ELC/0261/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António Couto-Pinto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couto-Pinto, A., Fernandes, J.R., Piedade, M. et al. A Flash ADC Tolerant to High Offset Voltage Comparators. Circuits Syst Signal Process 36, 1150–1168 (2017). https://doi.org/10.1007/s00034-016-0350-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0350-3

Keywords

Navigation