Abstract
In order to process charge-coupled-device (CCD) signals, a correlated double sampling (CDS) circuit is necessary for noise elimination. Furthermore, in order to amplify the CCD signals to proper amplitude, an extra variable-gain amplifier (VGA) circuit is also necessary for providing gain. In traditional works, for conciseness and efficiency, those separated CDS and VGA circuits are combined together into a single circuit. However, such a CDS circuit with embedded VGA can provide only several different gain values and 12-bit sampling resolution at most, which cannot meet the increasing demands from the users. Hence, for this reason, a new CDS circuit with embedded VGA has been proposed in this paper. This new CDS circuit has five advantages: high resolution of VGA-gain programming (512 different gain values), wide span of VGA-gain range (0–18 dB), good linearity of VGA-gain curve (linear-in-dB), fast sampling rate (80 MHz), and high sampling resolution (14-bit). Furthermore, this new CDS circuit can automatically convert “single-ended input signal” into “dual-ended output signal,” facilitating subsequent signal processing. Finally, this proposed circuit is fabricated in SMIC 0.18 \(\upmu \hbox {m}\) 3.3 V CMOS process. Under 80 MHz sampling rate, the measurement results show that the SNR is 72.96 dB; the SFDR is 80 dB; and the ENOB is 11.54-bit.












Similar content being viewed by others
References
Y. Chae, J. Cheon, S. Lim, M. Kwon et al., A 2.1 M pixels, 120 frame/s CMOS image sensor with column-parallel \(\Delta \Sigma \) ADC architecture. IEEE J. Solid-State Circuits 46(1), 236–247 (2011). doi:10.1109/jssc.2010.2085910. (ISSN 0018-9200)
M.-H. Choi, G.-C. Ahn, S.-H. Lee, 12b 50 MS/s 0.18 \(\upmu \)m CMOS ADC with highly linear input variable gain amplifier. Electron. Lett. 46(18), 1254–1256 (2010). doi:10.1049/el.2010.1834. (ISSN 0013-5194)
H. Elwan et al., A differential-ramp based 65 dB-linear VGA technique in 65 nm CMOS. IEEE J. Solid-State Circuits 44(9), 2503–2514 (2009). doi:10.1109/JSSC.2009.2021446. (ISSN 0018-9200)
R.L. Gower et al., Low power wide bandwidth programmable gain CDS amplifier/instrumentation amplifier. Google Patents Web. http://www.google.com/patents/US6573784 (2003). Accessed 9 Aug 2016
M.L. Hafiane, R. Blachnitz, O. Manck, Z. Dibi et al., In-pixel implementation of an area-efficient analog-signal-processing for CMOS-3D image sensor. in Semiconductor Conference Dresden (SCD) (2011), pp. 1–4. doi:10.1109/SCD.2011.6068755
S.-W. Han, E. Yoon, Area-efficient correlated double sampling scheme with single sampling capacitor for CMOS image sensors. Electron. Lett. 42(6), 335–337 (2006). doi:10.1049/el:20064189. ISSN 0013-5194
S.M. Johnson et al., Correlated double sampling variable gain amplifier circuit for use in a digital camera. Google Patents Web. http://www.google.com/patents/US7289145 (2007). Accessed 9 Aug 2016
M. Keen, An analog-to-digital processor for camcorders and digital still cameras. IEEE Trans. Consum. Electron. 44(3), 570–580 (1998). doi:10.1109/30.713165. (ISSN 0098-3063)
G. Köklü, Y. Leblebici, S. Carrara, A switched capacitor fully differential correlated double sampling circuit for CMOS image sensors, in 2011 5th International Symposium on Medical Information and Communication Technology (2011), pp.113–116. doi:10.1109/ISMICT.2011.5759808
S. Lim, J. Cheon, Y. Chae, W. Jung et al., A 240-frames/s 2.1-M pixel CMOS image sensor with column-shared cyclic ADCs. IEEE J. Solid-State Circuits 46(9), 2073–2083 (2011). doi:10.1109/JSSC.2011.2144010. (ISSN 0018-9200)
R. Liu, et al., CCD signal processing based on correlated double sampling, in 2011 5th International Conference on Bioinformatics and Biomedical Engineering, (iCBBE) (2011), pp.1–3. doi:10.1109/icbbe.2011.5780220
C. Mangelsdorf, K. Nakamura, S. Ho, T. Brooks, K. Nishio, H. Matsumoto, A CMOS front-end for CCD cameras, in Solid-State Circuits Conference, Digest of Technical Papers. 42nd ISSCC., 1996 IEEE. International (1996), pp. 186–187. doi:10.1109/ISSCC.1996.488564
S. Matsuo, T.J. Bales, M. Shoda, S. Osawa et al., 8.9-megapixel video image sensor with 14-b column-parallel SA-ADC. IEEE Trans. Electron Devices 56(11), 2380–2389 (2009). doi:10.1109/TED.2009.2030649. (ISSN 0018-9383)
J.-H. Park, S. Aoyama, T. Watanabe, K. Isobe et al., A high-speed low-noise CMOS image sensor with 13-b column-parallel single-ended cyclic ADCs. IEEE Trans. Electron Devices 56(11), 2414–2422 (2009). doi:10.1109/TED.2009.2030635. (ISSN 0018-9383)
D. Reynolds, S. Ho, An integrated 12 bit analog front end for CCD based image processing applications, in VLSI Circuits, 1996. Digest of Technical Papers., 1996 Symposium on (1996), pp.96–97. doi:10.1109/VLSIC.1996.507728
L. Zhang, H. Lin, R. Du, A novel sampling method for CCD signal processing, in 2010 3rd International Congress on Image and Signal Processing (CISP) (2010), pp. 3985–3987. doi:10.1109/CISP.2010.5647829
X. Zheng, F. Li, X. Wang, C. Zhang, A current-to-voltage integrator using area-efficient correlated double sampling technique, in 2012 IEEE International Symposium on Circuits and Systems (2012), pp. 2167–2170. doi:10.1109/ISCAS.2012.6271717
Y. Zheng et al., A CMOS VGA with DC offset cancellation for direct-conversion receivers. IEEE Trans. Circuits Syst. 56(1), 103–113 (2009). doi:10.1109/TCSI.2008.2010592. (ISSN 1549-8328)
H. Zhuang et al., CDS circuit with 0 to 18 dB, 9-bit VGA functionality. Electron. Lett. 50(3), 158–159 (2014). doi:10.1049/el.2013.2133. (ISSN 0013-5194)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the National Natural Science Foundation of China (61234002, 61322405, 61306044, 61376033), the National High-tech Program of China (2013AA014103).
Rights and permissions
About this article
Cite this article
Zhuang, H., Zhu, Z., Wang, J. et al. CDS Circuit with High-Performance VGA Functionality and Its Design Procedure. Circuits Syst Signal Process 36, 1781–1805 (2017). https://doi.org/10.1007/s00034-016-0391-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-016-0391-7