Skip to main content
Log in

A Simple Structure for MASH \(\Sigma \Delta \) Modulators with Highly Reduced In-Band Quantization Noise

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A new topology of multi-loop sigma-delta \((\Sigma \Delta )\) modulators is proposed which utilizes two analog inter-stage paths to improve the noise-shaping ability of the modulator by one order and simultaneously optimizing one pair of noise transfer function zeros. Furthermore, an improved version of this modulator is presented which is simpler to implement. So, by using minimum extra circuit and without increasing the number of active blocks, the in-band quantization noise is significantly reduced, and hence, the modulator signal-to-noise and distortion ratio (SNDR) is highly increased. As an example, a multistage noise-shaping (MASH) 2-1 \(\Sigma \Delta \) modulator based on the improved proposed structure is more examined. Some implementation considerations including the timing issue and first-stage quantization noise extraction are verified. Theoretical analysis and simulation results in both system and circuit levels are presented to confirm the usefulness of the proposed structure. The modulator is implemented in a 90-nm CMOS technology using Spectre-RF. For 10 MHz signal bandwidth, 85.2 dB SNDR and 87 dB dynamic range are achieved, while the power consumption is 31.6 mW from a single 1 V power supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. M. Aboudina, B. Razavi, A \(\Delta \Sigma \) CMOS ADC with 80-dB dynamic range and 31-MHz signal bandwidth, in IEEE International Midwest Symposium on Circuits and Systems (2009), pp. 397–401

  2. R. Baird, T. Fiez, Linearity enhancement of multibit delta-sigma A/D and D/A converters using data weighted averaging. IEEE Trans. Circuits Syst. II 42(12), 753–762 (1995)

    Article  Google Scholar 

  3. E. Bilhan, F. Maloberti, A wideband sigma-delta modulator with cross-coupled two-paths. IEEE Trans. Circuits Syst. I 56(5), 886–893 (2009)

    Article  MathSciNet  Google Scholar 

  4. L. Bos, G. Vandersteen, P. Rombouts, A. Geis, A. Morgado, Y. Rolain, G. Van der Plas, J. Ryckaert, Multirate cascaded discrete-time low-pass \(\Delta \Sigma \) modulator for GSM/Bluetooth/UMTS. IEEE J. Solid-State Circuits 45(6), 1198–1208 (2010)

    Article  Google Scholar 

  5. D.P. Brown, On limit cycles of second-order sigma-delta modulators with constant input. Circuits Syst. Signal Process. 14(5), 675–688 (1995)

    Article  MATH  Google Scholar 

  6. K. Bult, G.J. Geelen, A fast-settling CMOS op amp for SC circuits with 90-dB DC gain. IEEE J. Solid-State Circuits 25(6), 1379–1384 (1990)

    Article  Google Scholar 

  7. F. Chen, T. Kuendiger, S. Erfani, M. Ahmadi, Design of a wideband low-power continuous-time \(\Sigma \Delta \) modulator in 90 nm CMOS technology. Analog Integr. Circuits Signal Process. 54(3), 187–199 (2008)

    Article  Google Scholar 

  8. T.B. Cho, P.R. Gray, A 10 b, 20 Msample/s, 35 mW pipeline A/D converter. IEEE J. Solid-State Circuits 30(3), 166–172 (1995)

    Article  Google Scholar 

  9. K. Cornelissens, M. Steyaert, Design considerations for cascade \(\Delta \Sigma \) ADCs. IEEE Trans. Circuits Syst. II 55(5), 389–393 (2008)

    Article  Google Scholar 

  10. M. de Bock, P. Rombouts, A double-sampling cross noise-coupled split \(\Sigma \Delta \)-modulation A/D converter with 80 dB SNR, in IEEE International Conference on Electronics, Circuits and Systems (ICECS) (2009), pp. 45–48

  11. M. Dessouky, A. Kaiser, Very low-voltage digital-audio \(\Delta \Sigma \) modulator with 88-dB dynamic range using local switch bootstrapping. IEEE J. Solid-State Circuits 36(3), 349–355 (2001)

    Article  Google Scholar 

  12. Y. Du, T. He, Y. Jiang, S. Sin, U. Seng-Pan, R. P. Martins, A robust NTF zero optimization technique for both low and high OSRs sigma-delta modulators, in IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) (2012), pp. 29–32

  13. Y. Fujimoto, Y. Kanazawa, P. Loré, K. Iizuka, A 100 MS /s 4 MHz bandwidth 70 dB SNR \(\Delta \Sigma \) ADC in 90 nm CMOS. IEEE J. Solid-State Circuits 44(6), 1697–1708 (2009)

    Article  Google Scholar 

  14. A.A. Hamoui, K.W. Martin, High-order multibit modulators and pseudo data-weighted-averaging in low-oversampling \(\Delta \Sigma \) ADCs for broad-band applications. IEEE Trans. Circuits Syst. I 51(1), 72–85 (2004)

    Article  Google Scholar 

  15. C.Y. Ho, B.W. Ling, J.D. Reiss, Fuzzy impulsive control of high-order interpolative low-pass sigma-delta modulators. IEEE Trans. Circuits Syst. I 53(10), 2224–2233 (2006)

    Article  Google Scholar 

  16. C.Y. Ho, B.W. Ling, J.D. Reiss, X. Yu, Nonlinear behaviors of bandpass sigma-delta modulators with stable system matrices. IEEE Trans. Circuits Syst. II 53(11), 1240–1244 (2006)

    Article  Google Scholar 

  17. K.C. Hong, H. Chiueh, A 36-mW 320-MHz CMOS continuous-time sigma-delta modulator with 10-MHz bandwidth and 12-bit resolution, in IEEE International Midwest Symposium on Circuits and Systems (2010), pp. 725–728

  18. Y. Jung, H. Roh, J. Roh, An input-feedforward multibit adder-less modulator for ultrasound imaging systems. IEEE Trans. Instrum. Meas. 62(8), 2215–2227 (2013)

    Article  Google Scholar 

  19. B. Khazaeili, M. Yavari, MASH \(\Sigma \Delta \) modulator with highly reduced in-band quantisation noise. Electron. Lett. 50(3), 161–163 (2014)

    Article  Google Scholar 

  20. B. Khazaeili, M. Yavari, A simple global resonation strategy for wideband discrete-time MASH \(\Sigma \Delta \) modulators, in 22nd Iranian Conference on Electrical Engineering (ICEE) (2014), pp. 334–337

  21. K. Lee, C. Jeongseok, M. Aniya, K. Hamashita, K. Takasuka, S. Takeuchi, G.C. Temes, A noise-coupled time-interleaved \(\Delta \Sigma \) ADC with 4.2MHz BW, -98dB THD, and 79dB SNDR, in IEEE International Solid-State Circuits Conference, Digest of Technical Papers (2008), pp. 494–631

  22. K. Lee, J. Chae, M. Aniya, K. Hamashita, K. Takasuka, S. Takeuchi, G.C. Temes, A noise-coupled time-interleaved delta-sigma ADC with 4.2 MHz bandwidth, 98 dB THD, and 79 dB SNDR. IEEE J. Solid-State Circuits 43(12), 2601–2612 (2008)

    Article  Google Scholar 

  23. K. Lee, M.R. Miller, G.C. Temes, An 8.1 mW, 82 dB delta-sigma ADC with 1.9 MHz BW and 98 dB THD. IEEE J. Solid-State Circuits 44(8), 2202–2211 (2009)

    Article  Google Scholar 

  24. B.W. Ling, C.Y. Ho, Q. Dai, J.D. Reiss, Reduction of quantization noise via periodic code for oversampled input signals and the corresponding optimal code design. Digit. Signal Process. 24, 209–222 (2014)

    Article  Google Scholar 

  25. C.Y. Lu, M. Onabajo, V. Gadde, L. Yung-chung, C. Hsein-Pu, V. Periasami, J. Silva-Martinez, A 25 MHz bandwidth 5th-order continuous-time low-pass sigma-delta modulator with 67.7 dB SNDR using time-domain quantization and feedback. IEEE J. Solid-State Circuits 45(9), 1795–1808 (2010)

    Article  Google Scholar 

  26. M.H. Maghami, M. Yavari, A hybrid CT/DT double-sampled SMASH \(\Sigma \Delta \) modulator for broadband applications in 90 nm CMOS technology. Analog Integr. Circuits Signal Process. 73(1), 101–114 (2012)

    Article  Google Scholar 

  27. N. Maghari, S. Kwon, U.-K. Moon, 74 dB SNDR multi-loop sturdy-MASH delta-sigma modulator using 35 dB open-loop opamp gain. IEEE J. Solid-State Circuits 44(8), 2212–2221 (2009)

    Article  Google Scholar 

  28. N. Maghari, U.-K. Moon, A third-order DT \(\Delta \Sigma \) Modulator using noise-shaped bi-directional single-slope quantizer. IEEE J. Solid-State Circuits 46(12), 2882–2891 (2011)

    Article  Google Scholar 

  29. P. Malcovati, S. Brigati, F. Francesconi, F. Maloberti, Behavioral modeling of switched-capacitor sigma-delta modulators. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50(3), 352–364 (2003)

    Article  Google Scholar 

  30. P. Malla, H. Lakdawala, K. Kornegay, K. Soumyanath, A 28-mW spectrum-sensing reconfigurable 20MHz 72dB-SNR 70 dB-SNDR DT \(\Delta \Sigma \) ADC for 802.11n/WIMAX receivers, in IEEE International Solid-State Circuits Conference, Digest of Technical Papers (2008), pp. 496–631

  31. P. Malla, H. Lakdawala, R. Naiknaware, K. Soumyanath, K. Kornegay, Systematic design of wideband \(\Delta \Sigma \) modulator for WiFi/WiMAX receivers. J. Analog Integr. Circuits Signal Process. 65(2), 197–208 (2010)

    Article  Google Scholar 

  32. K. Matsukawa, Y. Mitani, M. Takayama, K. Obata, S. Dsho, A. Matsuzawa, A fifth-order continuous-time delta-sigma modulator with single-opamp resonator. IEEE J. Solid-State Circuits 45(4), 697–706 (2010)

    Article  Google Scholar 

  33. X. Meng, Y. Zhang, T. He, G.C. Temes, A noise-coupled low-distortion delta-sigma ADC with shifted loop delays, in IEEE 57th International Midwest Symposium on Circuits and Systems (2014), pp. 587–590

  34. A. Morgado, R. del Río, J. de la Rosa, Adaptive SMASH \(\Sigma \Delta \) converters for the next generation of mobile phones—design issues and practical solutions, in IEEE International Conference NEWCAS (2010), pp. 357–360

  35. A. Morgado, R. del Río, J. de la Rosa, Resonation-based cascade \(\Sigma \Delta \) modulator for broadband low-voltage A/D conversion. Electron. Lett. 44(2), 97–99 (2008)

    Article  Google Scholar 

  36. T. Oh, N. Maghari, U.-K. Moon, A second-order \(\Delta \Sigma \) ADC using noise-shaped two-step integrating quantizer. IEEE J. Solid-State Circuits 48(6), 1465–1474 (2013)

    Article  Google Scholar 

  37. J. Peng, J. Wang, S. Tan, Optimal FIR filter design based on curve fitting approximation for uncertain 2–1 sigma-delta modulator. Circuits Syst. Signal Process. 33(3), 885–894 (2014)

    Article  Google Scholar 

  38. O. Rajaee, S. Takeuch, M. Aniya, K. Hamashita, U.K. Moon, Low-OSR over-ranging hybrid ADC incorporating noise-shaped two-step quantizer. IEEE J. Solid-State Circuits 46(11), 2458–2468 (2011)

    Article  Google Scholar 

  39. O. Rajaee, T. Musah, S. Takeuchi, M. Aniya, K. Hamashita, P. Hanumoluet, U.-K. Moon, A 79dB 80 MHz 8X-OSR hybrid delta-sigma/pipeline ADC, in Symposium on VLSI Circuits (2009), pp. 74–75

  40. B. Razavi, B.A. Wooley, Design techniques for high-speed, high-resolution comparators. IEEE J. Solid-State Circuits 27(12), 1916–1926 (1992)

    Article  Google Scholar 

  41. M. Sanchez-Renedo, S. Patón, L. Hernández, A 2-2 discrete time cascaded \(\Sigma \Delta \) modulator with NTF zero using interstage feedback, in IEEE International Conference on Electronics in Circuits and Systems (ICECS) (2006), pp. 954–957

  42. C. Sandner, M. Clara, A. Santner, T. Hartig, F. Kuttner, A 6-bit 1.2-GS/s low-power flash-ADC in 0.13-\(\mu \)m digital CMOS. IEEE J. Solid-State Circuits 40(7), 1499–1505 (2005)

    Article  Google Scholar 

  43. R. Schoofs, M.S.J. Steyaert, W. Sansen, A design-optimized continuous-time delta–sigma ADC for WLAN applications. IEEE Trans. Circuits Syst. I Regul. Pap. 54(1), 209–217 (2007)

    Article  Google Scholar 

  44. R. Schreier, G.C. Temes, Understanding delta-sigma data converters (Wiley/IEEE Press, Piscataway, 2005)

    Google Scholar 

  45. B.H. Seyedhosseinzadeh, M. Yavari, An efficient low-power sigma-delta modulator for multi-standard wireless applications. J. Circuits Syst. Comput. 21(04), 1250028 (2012)

    Article  Google Scholar 

  46. J. Silva, U. Moon, J. Steensgaard, G.C. Temes, Wideband low-distortion delta-sigma ADC topology. Electron. Lett. 37(12), 737–738 (2001)

    Article  Google Scholar 

  47. Z. Sohrabi, M. Yavari, A 13 bit 10 MHz bandwidth MASH 3–2 \(\Sigma \Delta \) modulator in 90 nm CMOS. Int. J. Circuit Theory Appl. 41(11), 1136–1153 (2012)

    Article  Google Scholar 

  48. G.C. Temes, New architectures for low-power delta-sigma analog-to-digital converter, in IEEE Asia Pacific Conference on Circuits and Systems (2008), pp. 1–6

  49. A.H.M. Vanruermund, H. Casier, M. Steyaert, Analog Circuit Design (Springer, New York, 2006)

    Book  Google Scholar 

  50. K. Vleugels, S. Rabii, B.A. Wooley, A 2.5-V sigma-delta modulator for broadband communications applications. IEEE J. Solid-State Circuits 36(12), 1887–1899 (2001)

    Article  Google Scholar 

  51. R.H. Walden, Analog-to-digital converter survey and analysis. IEEE J. Sel. Areas Commun. 17(4), 539–550 (1999)

    Article  MathSciNet  Google Scholar 

  52. K. Yamamoto, A.C. Carusone, A 1-1-1-1 MASH delta-sigma modulator with dynamic comparator-based OTAs. IEEE J. Solid-State Circuits 47(8), 1866–1883 (2012)

    Article  Google Scholar 

  53. X. Yang, H. Zhang, G. Chen, A low-power second-order two-channel time-interleaved \(\Sigma \Delta \) modulator for broadband application. Inst. Electron. Inf. Commun. Eng (IEICE) Trans. Electron. 92(6), 852–859 (2009)

    Google Scholar 

  54. F. Yang, M. Gani, Robust H2 approach for digital correction of cascaded Sigma Delta modulator. Circuits Syst. Signal Process. 26(4), 607–618 (2007)

    Article  MATH  Google Scholar 

  55. M. Yavari, O. Shoaei, A. Rodriguez-Vazquez, Systematic and optimal design of CMOS two-stage opamps with hybrid cascode compensation, in Proceedings on Design, Automation and Test in Europe (2006), pp. 144–149

  56. M. Yavari, O. Shoaei, Low-voltage low-power fast-settling CMOS operational transconductance amplifiers for switched-capacitor applications. IEE Proc. Circuits Devices Syst. 151(6), 573–578 (2004)

    Article  Google Scholar 

  57. A. Yukawa, A CMOS 8-bit high-speed A/D converter IC. IEEE J. Solid-State Circuits 20(3), 775–779 (1985)

    Article  Google Scholar 

  58. R. Zanbaghi, S. Saxena, G.C. Temes, T.S. Feiz, A 75-dB SNDR, 5-MHz bandwidth stage-shared 2–2 MASH modulator dissipating 16 mW power. IEEE Trans. Circuits Syst. I 59(8), 1614–1625 (2012)

    Article  MathSciNet  Google Scholar 

  59. R. Zanbaghi, T.S. Fiez, G. Temes, A new zero-optimization scheme for noise-coupled \(\Delta \Sigma \) ADCs, in IEEE International Symposium on Circuits and Systems (2010), pp. 2163–2166

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yavari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazaeili, B., Yavari, M. A Simple Structure for MASH \(\Sigma \Delta \) Modulators with Highly Reduced In-Band Quantization Noise. Circuits Syst Signal Process 36, 2125–2153 (2017). https://doi.org/10.1007/s00034-016-0406-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0406-4

Keywords

Navigation