Skip to main content
Log in

Reliable Robust Control for the System with Input Saturation Based on Gain Scheduling

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a reliable robust discrete gain scheduling controller is designed based on the linear matrix inequalities (LMIs) and gain scheduling technology for the systems with the input saturation, system uncertainty, external disturbance and actuator failures. By the designed discrete gain scheduling controller, we can use a series of nesting ellipsoid invariant sets to strengthen the disturbance attenuation ability as strong as possible. It means that the innermost invariant ellipsoid set needs to be minimized to strengthen the disturbance attenuation ability. The dynamic performance of the closed-loop system is improved by introducing a parameter. By the Lyapunov approach, the existing conditions for the admissible controller can be formulated in the form of LMIs. The numerical simulation illustrates the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.K. Ahn, L.G. Wu, P. Shi, Stochastic stability analysis for 2-D Roesser systems with multiplicative noise. Automatica 69, 356–363 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. C.K. Ahn, P. Shi, L.G. Wu, Receding horizon stabilization and disturbance attenuation for neural networks with time-varying delaym. IEEE Trans. Cybern. 45(12), 2680–2692 (2015)

    Article  Google Scholar 

  3. C.K. Ahn, P. Shi, M.V. Basin, Two-dimensional dissipative control and filtering for Roesser model. IEEE Trans. Autom. Control 60(7), 1745–1759 (2015)

    Article  MathSciNet  Google Scholar 

  4. K.A. Choon, S. Peng, L.G. Wu, \(l_{\infty }-\) gain performance analysis for two-dimensional Roesser systems with persistent bounded disturbance and saturation nonlinearity. Inf. Sci. 333, 126–139 (2016)

    Article  MathSciNet  Google Scholar 

  5. G.R. Duan, H.H. Yu, LMIs in Control Systems: Analysis, Design and Applications (CRC Press, Boca Raton, 2013)

    Google Scholar 

  6. F. Grognard, R. Sepulchre, G. Bastin, Improving the performance of low-gain designs for bounded control of linear systems. Automatica 38(10), 1777–1782 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Hu, A.R. Teel, L. Zaccarian, Anti-windup synthesis for linear control systems with input saturation: achieving regional, nonlinear performance. Automatica 44(2), 512–519 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Hu, Z. Lin, On improving the performance with bounded continuous feedback laws. IEEE Trans. Autom. Control 47(9), 1570–1575 (2002)

    Article  MathSciNet  Google Scholar 

  9. H.K. Khalil, Nonlinear Systems, 3rd edn. (Prentice Hall, Upper Saddle River, 2002)

    MATH  Google Scholar 

  10. N. Kapoor, A.R. Teel, P. Daoutidis, An anti-windup design for linear systems with input saturation. Automatica 34(5), 559–574 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. D.J. Leith, W.E. Leithead, Survey of gain-scheduling analysis and design. Int. J. Control 73(11), 1001–1025 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Z. Lin, Global control of linear systems with saturating actuators. Automatica 34(7), 897–905 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. W.J. Rugh, J.S. Shamma, Research on gain scheduling. Automatica 36(10), 1401–1425 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Stoorvogel, A.A., Wang, X., Saberi, A., Sannuti, P.: Control of linear systems with input saturation and matched uncertainty and disturbance. In: 2011 American Control Conference, pp. 4380–4385 (2011)

  15. E. Shahri, S. Balochian, An analysis and design method for fractional-order linear systems subject to actuator saturation and disturbance. Optim. Control Appl. Methods 37(2), 305–322 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. W.C. Sun, Z.L. Zhao, H.J. Gao, Saturated adaptive robust control for active suspension systems. IEEE Trans. Ind. Electron. 60(9), 3889–3896 (2013)

    Article  Google Scholar 

  17. G.F. Wredenhagen, P.R. Belanger, Piecewise-linear LQ control for systems with input constraints. Automatica 30(3), 403–416 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. H.N. Wu, H.Y. Zhang, Reliable \(H_\infty \) fuzzy control for continuous-time nonlinear systems with actuator failures. IEEE Trans. Fuzzy Syst. 14(5), 609–618 (2006)

    Article  Google Scholar 

  19. Q. Wang, B. Zhou, G. Duan, Discrete gain scheduled control of input saturated systems with applications in on-orbit rendezvous. Acta Autom. Sin. 40(2), 208–218 (2014)

    Article  Google Scholar 

  20. K. Xia, W. Huo, Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with input saturation. ISA Trans. 62, 249–257 (2016)

    Article  MATH  Google Scholar 

  21. J.Y. Yao, Z.X. Jiao, D.W. Ma, L. Yan, High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties. IEEE Trans. Mechatron. 19(2), 633–641 (2014)

    Article  Google Scholar 

  22. J. Yu, M. Chen, Fault-tolerant control for near space vehicles with input saturation using disturbance observer and neural networks. Circuits Syst. Signal Process. 34(7), 2091–2107 (2015)

    Article  Google Scholar 

  23. B. Zhou, D. Li, Z. Lin, Control of discrete-time periodic linear systems with input saturation via multi-step periodic invariant sets, nonlinear performance. Int. J. Robust Nonlinear Control 25(1), 1372–1377 (2013)

    Google Scholar 

  24. B. Zhou, G. Duan, Z. Lin, A parametric Lyapunov equation approach to the design of low gain feedback. IEEE Trans. Autom. Control 53(6), 1548–1554 (2008)

    Article  MathSciNet  Google Scholar 

  25. B. Zhou, Global stabilization of periodic linear systems by bounded controls with applications to spacecraft magnetic attitude control. Automatica 60, 145–154 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. L. Zhao, Y. Jia, Neural network-based adaptive consensus tracking control for multi-agent systems under actuator faults. Int. J. Syst. Sci. 47(8), 1931–1942 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Z.Q. Zuo, W.C. Daniel, Y.J. Wang, Fault tolerant control for singular systems with actuator saturation and nonlinear perturbation. Automatica 46(3), 569–576 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant 61503105, the National Basic Research Program of China (National 973 Program) under Grant 2012CB821204 and the National Natural Science Key Foundation of China under Grant 61333009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhang, K. & Xue, A. Reliable Robust Control for the System with Input Saturation Based on Gain Scheduling. Circuits Syst Signal Process 36, 2586–2604 (2017). https://doi.org/10.1007/s00034-016-0427-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0427-z

Keywords

Navigation