Skip to main content
Log in

Finite-Time Stability and Stabilization for Continuous Systems with Additive Time-Varying Delays

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper is centered on the problem of delay-dependent finite-time stability and stabilization for a class of continuous system with additive time-varying delays. Firstly, based on a new Lyapunov–Krasovskii-like function (LKLF), which splits the whole delay interval into some proper subintervals, a set of delay-dependent finite-time stability conditions, guaranteeing that the state of the system does not exceed a given threshold in fixed time interval, are derived in form of linear matrix inequalities. In particular, to obtain a less conservative result, we take the LKLF as a whole to examine its positive definite which can slack the requirements for Lyapunov matrices and reduce the loss information when estimating the bound of the function. Further, based on the results of finite-time stability, sufficient conditions for the existence of a state feedback finite-time controller, guaranteeing finite-time stability of the closed-loop system, are obtained and can be solved by using some standard numerical packages. Finally, some numerical examples are provided to demonstrate the less conservative and the effectiveness of the proposed design approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.K. Ahn, P. Shi, L. Wu, Receding horizon stabilization and disturbance attenuation for neural networks with time-varying delay. IEEE Trans. Cybern. 45(12), 2680–2692 (2014)

    Article  Google Scholar 

  2. F. Amato, M. Ariola, C. Cosentino, Finite-time stability of linear time-varying systems: analysis and controller design. IEEE Trans. Automat. Contr. 55(4), 1003–1008 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Briat, Linear Parameter-Varying and Time-Delay Systems: Analysis, Observation, Filtering & Control (Springer-Verlag, Berlin Heidelberg, 2014)

    MATH  Google Scholar 

  4. G. Chen, Y. Yang, Robust finite-time stability of fractional order linear time-varying impulsive systems. Circuits Syst. Signal Process. 34(4), 1–17 (2015)

    Article  MathSciNet  Google Scholar 

  5. J. Cheng, H. Zhu, S. Zhong et al., Finite-time H-infinity control for a class of Markovian jump systems with mode-dependent time-varying delays via new Lyapunov functional. ISA Trans. 52(6), 768–774 (2013)

    Article  Google Scholar 

  6. P. Dorato, Short time stability in linear time-varying systems. in Proceedings of the IRE International Convention, Record Part 4, New York, 83–87 (1961)

  7. B. Du, J. Lam, Z. Shu et al., A delay-partitioning projection approach to stability analysis of continuous systems with multiple delay components. IET Contr. Theory Appl. 3(4), 383–390 (2009)

    Article  MathSciNet  Google Scholar 

  8. H. Du, H-infinity state-feedback control of bilateral teleoperation systems with asymmetric time-varying delays. IET Contr. Theory Appl. 7(4), 594–605 (2013)

    Article  Google Scholar 

  9. Z. Feng, J. Lam, Stability and dissipativity analysis of distributed delay cellular neural networks. IEEE Trans. Neural Netw. 22(6), 976–981 (2011)

    Article  Google Scholar 

  10. Z. Feng, J. Lam, H. Gao, Alpha–Dissipativity analysis of singular time-delay systems. Automatica 47(11), 2548–2552 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Z. Feng, J. Lam, Integral partitioning approach to robust stabilization for uncertain distributed time-delay systems. Int. J. Robust Nonlinear Contr. 22(6), 676–689 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Z. Feng, J. Lam, G. Yang, Optimal partitioning method for stability analysis of continuous/discrete delay systems. Int. J. Robust Nonlinear Contr. 25(4), 559–574 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Gao, T. Chen, New results on stability of discrete-time systems with time-varying state delay. IEEE Trans. Autom. Contr. 52(2), 328–334 (2007)

    Article  MathSciNet  Google Scholar 

  14. H. Gao, T. Chen, J. Lam, A new delay system approach to network-based control. Automatica 44(1), 39–52 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Gao, W. Sun, P. Shi, Robust sampled-data control for vehicle active suspension systems. IEEE Trans. Contr. Syst. Technol. 18(1), 238–245 (2010)

    Article  Google Scholar 

  16. K. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems (Birkhauser, Basel, 2003)

    Book  MATH  Google Scholar 

  17. Y. Guo, Y. Yao, S. Wang et al., Input-output finite-time stabilization of linear systems with finite-time boundedness. ISA Trans. 53(4), 977–982 (2014)

    Article  Google Scholar 

  18. S. He, F. Liu, Finite-time fuzzy control of nonlinear jump systems with time delays via dynamic observer-based state feedback. IEEE Trans. Fuzzy Syst. 22(1), 230–233 (2014)

    Article  Google Scholar 

  19. J.P. Hespanha, P. Naghshtabrizi, Y. Xu, A survey of recent results in networked control systems. Proc. IEEE. 95(1), 138–162 (2007)

    Article  Google Scholar 

  20. M. Hu, J. Cao, A. Hu et al., A novel finite-time stability criterion for linear discrete-time stochastic system with applications to consensus of multi-agent system. Circuits Syst. Signal Process. 34(1), 41–59 (2014)

    Article  MATH  Google Scholar 

  21. W. Kang, S. Zhong, K. Shi et al., Finite-time stability for discrete-time system with time-varying delay and nonlinear perturbations. ISA Trans. 60, 67–73 (2015)

    Article  Google Scholar 

  22. J. Kim, H. Joe, S.C. Yu et al., Time delay controller design for position control of autonomous underwater vehicle under disturbances. IEEE Trans. Ind. Electron. 63(2), 1052–1061 (2016)

    Article  Google Scholar 

  23. J. Lam, H. Gao, C. Wang, Stability analysis for continuous systems with two additive time-varying delay components. Syst. Contr. Lett. 56(1), 16–24 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. X. Li, H. Gao, K. Gu, Delay-independent stability analysis of linear time-delay systems based on frequency discretization. Automatica 70, 288–294 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Liu, Y. Shen, X. Zhao, Delay-dependent observer-based H-infinity finite-time control for switched systems with time-varying delay. Nonlinear Anal. Hybrid Syst. 6(3), 885–898 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Liu, P. Shi, H.R. Karimi et al., Finite-time stability and stabilization for a class of nonlinear systems with time-varying delay. Int. J. Syst. Sci. 47(6), 1–12 (2014)

    Google Scholar 

  27. P. Liu, Further results on delay-range-dependent stability with additive time-varying delay systems. ISA Trans. 53(2), 258–266 (2014)

    Article  Google Scholar 

  28. R. Lu, P. Yang, J. Bai et al., Quantized observer-based sliding mode control for networked control systems via the time-delay approach. Circuits Syst. Signal Process. 35(5), 1563–1577 (2015)

    Article  MATH  Google Scholar 

  29. K. Mathiyalagan, H. Ju, R. Sakthivel, Novel results on robust finite-time passivity for discrete-time delayed neural networks. Neurocomputing 177, 585–593 (2016)

    Article  Google Scholar 

  30. P.G. Park, J.W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47(1), 235–238 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Rakkiyappan, N. Sakthivel, J. Cao, Stochastic sampled-data control for synchronization of complex dynamical networks with control packet loss and additive time-varying delays. Neural Netw. 66, 46–63 (2015)

    Article  Google Scholar 

  32. S. Selvi, R. Sakthivel, K. Mathiyalagan, Robust L-2-L-infinity control for uncertain systems with additive delay components. Circuits Syst. Signal Process. 34(9), 1–20 (2015)

    Article  MATH  Google Scholar 

  33. A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems. Automatica 49(9), 2860–2866 (2013)

    Article  MathSciNet  Google Scholar 

  34. H. Shao, Q. Han, On stabilization for systems with two additive time-varying input delays arising from networked control systems. J. Frankl. Instit. 349, 2033–2046 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Shao, Z. Zhang, Delay-dependent state feedback stabilization for a networked control model with two additive input delays. Appl. Math. Comput. 265, 748–758 (2015)

    MathSciNet  Google Scholar 

  36. W. Sun, H. Gao, O. Kaynak, Finite frequency H-infinity control for vehicle active suspension systems. IEEE Trans. Contr. Syst. Technol. 19(2), 416–422 (2011)

    Article  Google Scholar 

  37. W. Sun, Y. Zhao, J. Li et al., Active suspension control with frequency band constraints and actuator input delay. IEEE Trans. Ind. Electron. 59(1), 530–537 (2012)

    Article  Google Scholar 

  38. W. Sun, H. Gao, O. Kaynak, Adaptive backstepping control for active suspension systems with hard constraints. IEEE/ASME Trans. Mechatron. 18(18), 1072–1079 (2013)

    Article  Google Scholar 

  39. W. Sun, Z. Zhao, H. Gao, Saturated adaptive robust control for active suspension systems. IEEE Trans. Ind. Electron. 60(9), 3889–3896 (2013)

    Article  Google Scholar 

  40. S. Wang, T. Shi, L. Zhang et al., Extended finite-time H-infinity control for uncertain switched linear neutral systems with time-varying delays. Neurocomputing 152, 377–387 (2015)

    Article  Google Scholar 

  41. L. Wu, X. Su, P. Shi et al., A new approach to stability analysis and stabilization of discrete-time T-S fuzzy time-varying delay systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 41(1), 273–286 (2011)

    Article  Google Scholar 

  42. S. Xu, J. Lam, B. Zhang et al., New insight into delay-dependent stability of time-delay systems. Int. J. Robust Nonlinear Contr. 25(7), 961–970 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. W. Xue, W. Mao, Asymptotic stability and finite-time stability of networked control systems: analysis and synthesis. Asian J. Contr. 15(5), 1376–1384 (2013)

    MathSciNet  MATH  Google Scholar 

  44. H. Zeng, Y. He, M. Wu et al., Free-matrix-based integral inequality for stability analysis of systems with time-varying delay. IEEE Trans. Autom. Contr. 60(10), 2768–2772 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. B. Zhang, J. Lam, S. Xu, Stability analysis of distributed delay neural networks based on relaxed Lyapunov-Krasovskii functionals. IEEE Trans. Neural Netw. Learning Syst. 26, 1480–1492 (2014)

    Article  MathSciNet  Google Scholar 

  46. L. Zhang, S. Wang, H.R. Karimi et al., Robust finite-time control of switched linear systems and application to a class of servomechanism systems. IEEE/ASME Trans. Mechatron. 20(5), 2476–2485 (2015)

    Article  Google Scholar 

  47. X. Zhang, Q. Han, Novel delay-derivative-dependent stability criteria using new bounding techniques. Int. J. Robust Nonlinear Contr. 23(13), 1419–1432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Z. Zhang, Z. Zhang, H. Zhang, Finite-time stability analysis and stabilization for uncertain continuous-time system with time-varying delay. J. Frankl. Inst. 352(3), 1296–1317 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Z. Zhang, C. Lin, B. Chen, Complete LKF approach to stabilization for linear systems with time-varying input delay. J. Frankl. Inst. 352(6), 2425–2440 (2015)

    Article  MathSciNet  Google Scholar 

  50. Y. Zhao, H. Gao, J. Lam et al., Stability and stabilization of delayed T-S fuzzy systems: a delay partitioning approach. IEEE Trans. Fuzzy Syst. 17(4), 750–762 (2009)

    Article  Google Scholar 

  51. Q. Zhong, J. Cheng, Y. Zhao, Delay-dependent finite-time boundedness of a class of Markovian switching neural networks with time-varying delays. ISA Trans. 57, 43–50 (2015)

    Article  Google Scholar 

  52. G. Zong, R. Wang, W. Zheng et al., Finite-time H-infinity control for discrete-time switched nonlinear systems with time delay. Int. J. Robust Nonlinear Contr. 25(6), 914–936 (2015)

    Article  MATH  Google Scholar 

  53. Z. Zuo, H. Li, Y. Wang, New criterion for finite-time stability of linear discrete-time systems with time-varying delay. J. Frankl. Inst. 350(9), 2745–2756 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Liang, K., Li, H. et al. Finite-Time Stability and Stabilization for Continuous Systems with Additive Time-Varying Delays. Circuits Syst Signal Process 36, 2971–2990 (2017). https://doi.org/10.1007/s00034-016-0443-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0443-z

Keywords

Navigation