Abstract
Among the existing applications of wireless body sensor networks (WBSNs), a wearable health monitoring system (WHMS) is the most important. In a typical WHMS, miniature wireless biosensors, attached to or implanted in the human body, collect bio-signals such as the electrocardiogram (ECG), blood pressure or electromyogram (EMG) to provide real time and continuous health monitoring. In this paper, we present a compressed sensing (CS)-based approach to compress and recover the sensed bio-signals from the wireless biosensors of a WBSN. The CS encoding process has a low computational complexity and is suitable for use in power-constrained systems such as WHMS. We propose a simple deterministic measurement matrix, which is easy to implement in hardware. We design a digital CS encoder implementing the proposed measurement matrix and use it to compress the bio-signals in EMG and ECG wireless biosensors. The simulations and experimental results have shown that the EMG and ECG signals are compressed and recovered without perceptible loss if the compression ratios are, respectively, less than or equal to 75 and 87.5%. The obtained results have also confirmed the simplicity of the proposed measurement matrix since the CS encoder does not affect the memory usage or the processing time of the microcontrollers embedded in the wireless biosensors. Additionally, the CS encoder decreases by up to 75 and 87.5% the energy consumption of the transceivers for the EMG and ECG wireless biosensors.
Similar content being viewed by others
References
M. Akhlaq, T. Sheltami, RTSP: an accurate and energy-efficient protocol for clock synchronization in WSNs. IEEE Trans. Instrum. Meas. 62(3), 578–589 (2013). doi:10.1109/TIM.2012.2232472
A. Amini, F. Marvasti, Deterministic construction of binary, bipolar, and ternary compressed sensing matrices. IEEE Trans. Inf. Theory 57(4), 2360–2370 (2011). doi:10.1109/TIT.2011.2111670
A. Bandeira, E. Dobriban, D. Mixon, W. Sawin, Certifying the restricted isometry property is hard. IEEE Trans. Inf. Theory 59(6), 3448–3450 (2013). doi:10.1109/TIT.2013.2248414
R. Baraniuk, Compressive sensing (lecture notes). IEEE Signal Process. Mag. 24(4), 118–121 (2007). doi:10.1109/MSP.2007.4286571
M. Ben-Romdhane, C. Rebai, P. Desgreys, A. Ghazel, P. Loumeau, Flexible baseband analog front-end for NUS based multistandard receiver. In: Joint IEEE North-East Workshop on Circuits and Systems and TAISA Conference, 2009. NEWCAS-TAISA ’09, pp 1–4, ). (2009). doi:10.1109/NEWCAS.2009.5290417
E. Candes, T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006). doi:10.1109/TIT.2006.885507
E.J. Cands, The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique. 346(9), 589–592 (2008). http://www.sciencedirect.com/science/article/pii/S1631073X08000964
F. Chen, A. Chandrakasan, V. Stojanovic, Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE J. Solid-State Circuits 47(3), 744–756 (2012a). doi:10.1109/JSSC.2011.2179451
F. Chen, A. Chandrakasan, V. Stojanovic, Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE J. Solid-State Circuits 47(3), 744–756 (2012b). doi:10.1109/JSSC.2011.2179451
YS. Chen, HY. Lin, HC. Chiu, HP. Ma, A compressive sensing framework for electromyogram and electroencephalogram. In: Medical Measurements and Applications (MeMeA), 2014 IEEE International Symposium on, pp 1–6, (2014). doi:10.1109/MeMeA.2014.6860096
I. Ciocoiu, Foveated compressed sensing. Circuits, Systems, and Signal Processing pp 1–15, (2014). doi:10.1007/s00034-014-9878-2
D. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). doi:10.1109/TIT.2006.871582
ZM. Du, FY. Ye, H. Shi, GP. Zhu, A fast recovery method of 2d geometric compressed sensing signal. Circuits, Systems, and Signal Processing pp 1–14, (2014) doi:10.1007/s00034-014-9913-3
D. Gangopadhyay, E. Allstot, A. Dixon, K. Natarajan, S. Gupta, D. Allstot, Compressed sensing analog front-end for bio-sensor applications. IEEE J. Solid-State Circuits 49(2), 426–438 (2014). doi:10.1109/JSSC.2013.2284673
Z. He, T. Ogawa, M. Haseyama, The simplest measurement matrix for compressed sensing of natural images. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp 4301–4304, (2010). doi:10.1109/ICIP.2010.5651800
S. Imtiaz, A. Casson, E. Rodriguez-Villegas, Compression in wearable sensor nodes: Impacts of node topology. IEEE Tran. Biomed. Eng. 61(4), 1080–1090 (2014). doi:10.1109/TBME.2013.2293916
H. Mamaghanian, N. Khaled, D. Atienza, P. Vandergheynst, Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9), 2456–2466 (2011). doi:10.1109/TBME.2011.2156795
NRF24L01 nRF24L01 - 2.4GHz RF - products - nordic semiconductor. (2014). http://www.nordicsemi.com/eng/Products/2.4GHz-RF/nRF24L01
D. Oletic, M. Skrapec, V. Bilas, Prototype of respiratory sounds monitoring system based on compressive sampling. In: Zhang YT (ed) The International Conference on Health Informatics, no. 42 in IFMBE Proceedings, Springer International Publishing, pp 92–95, (2014). http://link.springer.com/chapter/10.1007/978-3-319-03005-0_24
R. Pal, B. Gupta, N. Prasad, R. Prasad Efficient data processing in ultra low power wireless networks: Ideas from compressed sensing. In: 2nd International Symposium on Applied Sciences in Biomedical and Communication Technologies, 2009. ISABEL 2009, pp 1-2, (2009). doi:10.1109/ISABEL.2009.53736622
A. Pantelopoulos, N. Bourbakis, A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 40(1), 1–12 (2010). doi:10.1109/TSMCC.2009.2032660
PhysioBank PhysioBank ATM, (2013). http://www.physionet.org/cgi-bin/atm/ATM
T. Qiao, W. Li, B. Wu, A new algorithm based on linearized bregman iteration with generalized inverse for compressed sensing. Circuits, Systems, and Signal Processing 33(5), 1527–1539 (2014). doi:10.1007/s00034-013-9714-0
A. Ravelomanantsoa, H. Rabah, A. Rouane SystemC-AMS based virtual prototyping of wireless body sensor network using compressed sensing. In: 2013 25th International Conference on Microelectronics (ICM), pp 1–4 (2013). doi:10.1109/ICM.2013.6734992
SystemC, SystemC-accellera systems initiative. (2012). http://www.accellera.org/downloads/standards/systemc
Y. Tang, G. Lv, K. Yin, Deterministic sensing matrices based on multidimensional pseudo-random sequences. Circuits, Systems, and Signal Processing 33(5), 1597–1610 (2014). doi:10.1007/s00034-013-9701-5
TEA (2014) TEA | Technologie Ergonomie Appliques. http://teaergo.com/drupal/en/tea
J. Tropp, J. Laska, M. Duarte, J. Romberg, R. Baraniuk, Beyond Nyquist: Efficient sampling of sparse bandlimited signals. IEEE Trans. Inf. Theory 56(1), 520–544 (2010). doi:10.1109/TIT.2009.2034811
L. Zeng, X. Zhang, L. Chen, T. Cao, J. Yang, Deterministic construction of Toeplitzed structurally chaotic matrix for compressed sensing. Circuits, Systems, and Signal Processing pp 1–17, (2014) . doi:10.1007/s00034-014-9873-7
H. Zörlein, F. Akram, M. Bossert, Dictionary adaptation in sparse recovery based on different types of coherence. CoRR abs/1307.3901 (2013)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ravelomanantsoa, A., Rouane, A., Rabah, H. et al. Design and Implementation of a Compressed Sensing Encoder: Application to EMG and ECG Wireless Biosensors. Circuits Syst Signal Process 36, 2875–2892 (2017). https://doi.org/10.1007/s00034-016-0444-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-016-0444-y