Skip to main content
Log in

Parametric Identification with Performance Assessment of Wiener Systems Using Brain Storm Optimization Algorithm

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a performance assessment-based system identification of different practically useful open-loop and closed-loop Wiener systems using an evolutionary computational algorithm named as brain storm optimization (BSO) algorithm. Different performance measures of the estimation process in practical scenario, i.e., accuracy; precision; consistency; and computational time, are measured with a properly selected fitness function which is the output mean square error (MSE) between the desired and the estimated outputs. Bias and variance of the output MSE have been found negligible for each plant model to show the accuracy and consistency limits, and the corresponding statistical test results have been shown to establish the consistency of the BSO-based identification approach. Efficient identification of each plant under a noisy environment ensures the robustness and the stability of the proposed evolutionary-based identification approach with BSO. The BSO-based optimum MSE values, corresponding estimated parameter values, computational times and the other statistical information are all compared and are found to be superior to those of the other approaches reported earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. A. Atitallah, S. Bedoui, K. Abderrahim, Identification of wiener time delay systems based on hierarchical gradient approach, in 8th Vienna International Conference on Mathematical Modelling MATHMOD 2015, vol. 48, no. 1 (2015), pp. 403–408

  2. S. Billings, S. Fakhouri, Identification of systems containing linear dynamic and static nonlinear elements. Automatica 18, 15–26 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Boyd, I.O. Chua, Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans. Circuits and Syst. 32(11), 1150–1161 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Dai, X.K. Ma, F.C. Li, Y. You, An approach for parameter estimation for a chaotic system based on genetic algorithm. Acta Phys. Sin. 51(11), 191–197 (2001)

    Google Scholar 

  5. B. Ding, X. Ping, Dynamic output feedback model predictive control for nonlinear systems represented by Hammerstein–Wiener model. J. Process Control 22(9), 1773–1784 (2012)

    Article  MathSciNet  Google Scholar 

  6. F. Ding, P.X. Liu, G. Liu, Gradient based and least squares based iterative identification methods for OE and OEMA systems. Digit. Signal Process. 20(5), 664–677 (2010)

    Article  Google Scholar 

  7. F. Ding, T. Chen, Hierarchical gradient-based identification of multivariable discrete-time systems. Automatica 41(2), 315–325 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. E.A. Elrady, L. Gan, Identification of Hammerstein and Wiener models using spectral magnitude matching, in Proceeding of the 17th World Congress on the International Federation of Automatic Control, Seoul, Korea, pp. 6440–6445, 6–11 July 2008

  9. W. Greblicki, Non parametric approach to Wiener system identification. IEEE Trans. Circuit Syst. I 44(6), 538–545 (1997)

    Article  Google Scholar 

  10. J.C. Gómez, A. Jutan, E. Baeyens, Wiener model identification and predictive control of a pH neutralisation process. IEE Proc. Control Theory Appl. 151(3), 329–338 (2004)

    Article  Google Scholar 

  11. A. Hagenblad, L. Ljung, A. Wills, Maximum likelihood identification of Wiener models. Automatica 44(11), 2697–2705 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Q. He, L. wang, B. Liu, Parameter estimation for chaotic systems by particle swarm optimization. Chaos Solitons Fractals 34(2), 654–671 (2007)

    Article  MATH  Google Scholar 

  13. I.W. Hunter, M.J. Korenburg, The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol. Cybern. 55(2–3), 135–144 (1986)

    MathSciNet  MATH  Google Scholar 

  14. G. Kapetanios, A note on an iterative least-squares estimation method for ARMA and VARMA models. Econ. Lett. 79(3), 305–312 (2003)

    Article  MATH  Google Scholar 

  15. K.K. Kima, E.R. Patrón, R.D. Braatz, Robust nonlinear internal model control of stable Wiener systems. J. Process Control 22(8), 1468–1477 (2012)

    Article  Google Scholar 

  16. S.L. Lacy, D. Bernstein, Identification of FIR Wiener systems with unknown, non-invertible, polynomial non-linearities. Int. J. Control 76(15), 1500–1507 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. S.L. Lacy, R.S. Erwin, D. Bernstein, Identification of Wiener systems with known noninvertible nonlinearities. J. Dyn. Syst. Meas. Control 123(4), 566–571 (2001)

    Article  Google Scholar 

  18. E.K. Larsson, M. Mossberg, T. Söderstrom, An overview of important practical aspects of continuous-time ARMA system identification. Circuits Syst. Signal Process. 25(1), 17–46 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. E.K. Larsson, E.G. Larsson, The Cramer-Rao bound for continuous-time AR parameter estimation with irregular sampling, in ICASSP 2001, Salt Lake City, Utah, USA, pp. 3097–3100 (2001)

  20. C.J. Lin, Y.J. Xu, Design of neuro-fuzzy systems using a hybrid evolutionary learning algorithm. J. Inf. Sci. Eng. 23, 463–477 (2007)

    Google Scholar 

  21. Y.J. Liu, D.Q. Wang, F. Ding, Least-squares based iterative algorithms for identifying Box–Jenkins models with finite measurement data. Digit. Signal Process. 20(5), 1458–1467 (2010)

    Article  Google Scholar 

  22. L. Ljung, Prediction error estimation methods. Circuits Syst. Signal Process. 21(1), 11–21 (2002)

    Article  MathSciNet  Google Scholar 

  23. M. Lovera, T. Gustafsson, M. Verhaegen, Recursive subspace identification of linear and non-linear Wiener state-space models. Automatica 36(11), 1639–1650 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. J.C. Patra, W.C. Chin, P.K. Meher, G. Chakraborty, Development of the Laguerre neural-network-based intelligent sensors for wireless sensor networks. IEEE Trans. Instrum. Meas. 60(3), 725–734 (2011)

    Article  Google Scholar 

  25. B. Peng, B. Liu, F.Y. Zhang, L. Wang, Differential evolution algorithm-based parameter estimation for chaotic systems. Chaos Solitons Fractals 39(5), 2110–2118 (2009)

    Article  Google Scholar 

  26. Y. Shi, Brain Storm Optimization algorithm, in ICSI 2011, part I, China, pp. 18–27 (2011)

  27. S. Tötterman, H.T. Toivonen, Support vector method for identification of Wiener models. J. Process Control 19(7), 1174–1181 (2009)

    Article  Google Scholar 

  28. J. Vörös, Modeling and identification of nonlinear cascade and sandwich systems with general backlash. J. Electr. Eng. 65(2), 104–110 (2014)

    Google Scholar 

  29. J. Vörös, Identification of nonlinear dynamic systems with input saturation and output backlash using three-block cascaded models. J. Frankl. Inst. 351(12), 5455–5466 (2014)

    Article  Google Scholar 

  30. R.J. Wai, Y.-F. Lin, K.-L. Chuang, Total-sliding-mode-based particle swarm optimization control for linear induction motor. J. Frankl. Inst. 351(5), 2755–2780 (2014)

    Article  Google Scholar 

  31. R.E. Walpole, R.H. Myer, Probability and Statistics for Engineers and Scientists (Macmillan, New York, 1978)

    Google Scholar 

  32. Z. Wang, H. Gu, Parameter identification of bilinear system based on genetic algorithm, in Bio-Inspired computational intelligence and applications, vol. 4688, pp. 83–91 (2007)

  33. D. Wang, F. Ding, Least squares based and gradient based iterative identification for Wiener nonlinear systems. Signal Process. 91(5), 1182–1189 (2011)

    Article  MATH  Google Scholar 

  34. D.Q. Wang, G.W. Yang, R.F. ding, Gradient-based iterative parameter estimation for Box–Jenkins systems. Comput. Math. Appl. 60(5), 1200–1208 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. J.S. Wang, Y.L. Hsu, Dynamic nonlinear system identification using a Wiener-type recurrent network with OKID algorithm. J. Inf. Sci. Eng. 24(3), 891–905 (2008)

    Google Scholar 

  36. D.T. Westwick, M. Verheagen, Identifying MIMO Wiener systems using subspace methods. Signal Process. 52(2), 235–258 (1996)

    Article  MATH  Google Scholar 

  37. T. Wigren, Recursive prediction error identification using the nonlinear Wiener model. Automatica 29(4), 1011–1025 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Y. Zhao, D.T. Westwick, A direct approach to closed-loop identification of Wiener models using subspace-based methods, in Proceedings of ACC, Colorado, United States, pp. 3585–3589 (2003)

  39. Y. Zhu, Distillation column identification of control using Wiener model. in Proceedings of American Control Conference vol. 5, pp. 3462–3466 (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, P.S., Kar, R., Mandal, D. et al. Parametric Identification with Performance Assessment of Wiener Systems Using Brain Storm Optimization Algorithm. Circuits Syst Signal Process 36, 3143–3181 (2017). https://doi.org/10.1007/s00034-016-0464-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0464-7

Keywords

Navigation