Skip to main content
Log in

Low-Complexity \(l_0\)-Norm Penalized Shrinkage Linear and Widely Linear Affine Projection Algorithms

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose an \(l_0\)-norm penalized shrinkage linear affine projection (\(l_0\)-SL-AP) algorithm and an \(l_0\)-norm penalized shrinkage widely linear affine projection (\(l_0\)-SWL-AP) algorithm. The proposed algorithms provide variable step-size by minimizing the noise-free a posteriori error at each iteration and introduce an \(l_0\)-norm constraint to the cost function. The \(l_0\)-SWL-AP algorithm also exploits noncircular properties of the input signal. In contrast with conventional AP algorithms, the proposed algorithms increase the estimation accuracy for time-varying sparse system identification. A quantitative analysis of the convergence behavior for the \(l_0\)-SWL-AP algorithm verifies the capabilities of the proposed algorithms. To reduce the complexity, we also introduce dichotomous coordinate descent (DCD) iterations to the proposed algorithms (\(l_0\)-SL-DCD-AP and \(l_0\)-SWL-DCD-AP) in this paper. Simulations indicate that the \(l_0\)-SL-AP and \(l_0\)-SWL-AP algorithms provide faster convergence speed and lower steady-state misalignment than the previous APA-type algorithms. The \(l_0\)-SL-DCD-AP and \(l_0\)-SWL-DCD-AP algorithms perform similarly to their counterparts but with reduced complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Adali, P.J. Schreier, L.L. Scharf, Complex-valued signal processing: the proper way to deal with impropriety. IEEE Trans. Signal Process. 59(11), 5101–5125 (2011)

    Article  MathSciNet  Google Scholar 

  2. F. Albu, C. Paleologu, J. Benesty, Y.V. Zakharov, Variable step size dichotomous coordinate descent affine projection algorithm, in IEEE EUROCON (2009), pp. 1364–1369

  3. F. Albu, C. Paleologu, J. Benesty, S. Ciochina, A low complexity proportionate affine projection algorithm for echo cancellation, in European Signal Processing Conference (2010), pp. 6–10

  4. J. Benesty, S.L. Gay, An improved PNLMS algorithm. Proc. IEEE ICASSP. 2, 1881–1884 (2002)

    Google Scholar 

  5. M.Z.A. Bhotto, A. Antoniou, A family of shrinkage adaptive filtering algorithms. IEEE Trans. Signal Process. 61(7), 1689–1697 (2013)

    Article  MathSciNet  Google Scholar 

  6. P.S. Bradley, O.L. Mangasarian, Feature selection via concave minimization and support vector machines, in Proc. 13th ICML (1998), pp. 82–90

  7. E.J. Candes, M.B. Wakin, S.P. Boyd, Enhancing sparsity by reweighted \(l_1\) minimization. J. Fourier Anal. Appl. 14(5), 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Chen, Novel adaptive signal processing techniques for underwater acoustic communications, Ph.D. Thesis (University of York, 2011)

  9. Y. Chen, Y. Gu, A.O. Hero, Sparse LMS for system identification, in Proc. IEEE ICASSP (2009), pp. 3125–3128

  10. I. Daubechies, M. Defrise, C. De-Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. D.L. Duttweiler, Proportionate normalized least-mean-squares adaptation in echo cancelers. IEEE Trans. Speech Audio Process. 8(5), 508–518 (2000)

    Article  Google Scholar 

  12. B. Farhang-Boroujeny, Adaptive Filters: Theory and Application, 2nd edn. (Wiley, Chichester, 2013)

    Book  MATH  Google Scholar 

  13. S.L. Gay, An efficient, fast converging adaptive filter for network echo cancellation. Asilomar Conf. Sig. Syst. Comput. 1, 394–398 (1998)

    Google Scholar 

  14. S.L. Gay, S. Tavathia, The fast affine projection algorithm. ICASSP 5, 3023–3026 (1995)

    Google Scholar 

  15. Y. Gu, J. Jin, S. Mei, \(l_0\) norm constraint LMS algorithm for sparse system identification. IEEE Signal Process. 16(9), 774–777 (2009)

    Article  Google Scholar 

  16. O. Hoshuyama, R.A. Goubran, A. Sugiyama, A generalized proportionate variable step-size algorithm for fast changing acoustic environments. Proc. IEEE ICASSP. 4, 161–164 (2004)

    Google Scholar 

  17. E.H. Krishna, M. Raghuram, K.V. Madhav, K.A. Reddy, Acoustic echo cancellation using a computationally efficient transform domain LMS adaptive filter, in International Conference on ISSPA (2010), pp. 409–412

  18. M.V.S. Lima, W.A. Martins, P.S.R. Diniz, Affine projection algorithms for sparse system identification, in Proc. IEEE ICASSP (2013), pp. 5666–5670

  19. M.V.S. Lima, I. Sobron, W.A. Martins, P.S.R. Diniz, Stability and MSE analyses of affine projection algorithms for sparse system identification, in Proc. IEEE ICASSP (2014), pp. 6399–6403

  20. R. Meng, R.C. de Lamare, V.H. Nascimento, Sparsity-aware affine projection adaptive algorithms for system identification, in SSPD (2011), pp. 1–5

  21. C. Paleologu, J. Benesty, S. Ciochina, A variable step-size affine projection algorithm designed for acoustic echo cancellation. IEEE Trans. Audio Speech Lang. Process. 16, 597–600 (2008)

    Article  Google Scholar 

  22. C. Paleologu, S. Ciochina, J. Benesty, An efficient proportionate affine projection algorithm for echo cancellation. IEEE Signal Process. 17(2), 165–168 (2010)

    Article  Google Scholar 

  23. K. Pelekanakis, M. Chitre, Comparison of sparse adaptive filters for underwater acoustic channel equalization/estimation, in IEEE ICCS (2010), pp. 395–399

  24. B. Picinbono, P. Chevalier, Widely linear estimation with complex data. IEEE Trans. Signal Process. 43(8), 2030–2033 (1995)

    Article  Google Scholar 

  25. S.G. Sankaran, A.A. Beex, Convergence behavior of affine projection algorithms. IEEE Trans. Signal Process. 48(4), 1086–1096 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Y.M. Shi, L. Huang, C. Qian, H.C. So, Shrinkage linear and widely linear complex-valued least mean squares algorithms for adaptive beamforming. IEEE Trans. Signal Process. 63(1), 119–131 (2015)

    Article  MathSciNet  Google Scholar 

  27. H.-C. Shin, A.H. Sayed, Mean-square performance of a family of affine projection algorithms. IEEE Trans. Signal Process. 52(1), 90–102 (2004)

    Article  MathSciNet  Google Scholar 

  28. G. Su, J. Jin, Y. Gu, J. Wang, Performance analysis of \(l_0\)-norm constraint least mean square algorithm. IEEE Trans. Signal Process. 60(5), 2223–2235 (2012)

    Article  MathSciNet  Google Scholar 

  29. J. Yang, G.E. Sobelman, Sparse LMS with segment zero attractors for adaptive estimation of sparse signals, in IEEE Asia Pacific Conference on Circuits and Systems (2010), pp. 422–425

  30. Q.J. You, Z. Jianyun, Z. Xinan, A widely-linear LMS algorithm for adaptive beamformer, in IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (2007), pp. 1060–1063

  31. Y. Zakharov, Low-complexity implementation of the affine projection algorithm. IEEE Signal Process. 15, 557–560 (2008)

    Article  Google Scholar 

  32. M. Zibulevsky, M. Elad, \(l_1\)-\(l_2\) optimization in signal and image processing. IEEE Signal Process. Mag. 27, 76–88 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61471138, 50909029 and 61531012), Program of International S&T Cooperation (Grant No. 2013DFR20050), the Defense Industrial Technology Development Program (Grant No. B2420132004), the Acoustic Science and Technology Laboratory (2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xiao, S., Sun, D. et al. Low-Complexity \(l_0\)-Norm Penalized Shrinkage Linear and Widely Linear Affine Projection Algorithms. Circuits Syst Signal Process 36, 3385–3408 (2017). https://doi.org/10.1007/s00034-016-0465-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0465-6

Keywords

Navigation