Abstract
This paper proposes an \(L_{0}\) norm constraint memory improved proportionate affine projection algorithm with a lower computational complexity than the conventional \(L_{0}\) norm constraint improved proportionate affine projection algorithm. Particularly, to achieve a low computational complexity, we propose to remove the matrix before the zero attraction term. Moreover, the product of the proportionate matrix and input matrix is implemented using an efficient recursive scheme. Simulation results in acoustic echo cancellation context show that our algorithm not only significantly reduces the computational complexity but also achieves slightly improved steady-state misalignment.


Similar content being viewed by others
References
S.J.M. Almeida, J.C.M. Bermudez, N.J. Bershad, A stochastic model for a pseudo affine projection algorithm. IEEE Trans. Signal Process. 57(1), 107–118 (2009)
J. Benesty, S.L. Gay, An improved PNLMS algorithm, in IEEE ICASSP 2002, pp. 1881–1884
M.Z.A. Bhotto, A. Antoniou, Affine-projection-like adaptive-filtering algorithms using gradient-based step size. IEEE Trans. Circuits Syst. I Regul. Pap. 61(7), 2048–2056 (2014)
Y. Dong, H. Zhao, Y. Yu, Adaptive combination of proportionate NSAF with individual activation factors. Circuits Syst. Signal Process. doi:10.1007/s00034-016-0386-4
Y. Gu, J. Jin, S. Mei, \(l_{0}\) norm constraint LMS algorithm for sparse system identification. IEEE Signal Process. Lett. 16(9), 774–777 (2009)
S. Haykin, Adaptive Filter Theory (Prentice-Hall, Upper Saddle River, 2002)
O. Hoshuyama, R.A. Goubran, A. Sugiyama, A generalized proportionate variable step-size algorithm for fast changing acoustic environments, in IEEE ICASSP 2004, pp. 161–164
M.V.S. Lima, T.N. Ferreira, W.A. Martins, P.S.R. Diniz, Sparsity-aware data-selective adaptive filters. IEEE Trans. Signal Process. 62(17), 4557–4572 (2014)
M.V.S. Lima, W.A. Martins, P.S.R. Diniz, Affine projection algorithms for sparse system identification, in IEEE ICASSP 2013, pp. 5666–5670
Y. Liu, C. Li, Z. Zhang, Diffusion sparse least-mean squares over networks. IEEE Trans. Signal Process. 60(8), 4480–4485 (2012)
L. Lu, H. Zhao, A novel convex combination of LMS adaptive filter for system identification, in ICSP 2014, pp. 225–229
L. Lu, H. Zhao, Z. He, B. Chen, A novel sign adaptation scheme for convex combination of two adaptive filters. Int. J. Electron. Commun. 69(11), 1590–1598 (2015)
L. Lu, H. Zhao, C. Chen, A new normalized subband adaptive filter under minimum error entropy criterion. Signal Image Video Process. 10(6), 1097–1103 (2016)
L. Lu, H. Zhao, Improved filtered-x least mean kurtosis algorithm for active noise control. Circuits Syst. Signal Process. (2016). doi:10.1007/s00034-016-0379-3
K. Ozeki, T. Umeda, An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties. Electron. Commun. Jpn. 67–A(5), 19–27 (1984)
C. Paleologu, S. Ciochina, J. Benesty, An efficient proportionate affine projection algorithm for echo cancellation. IEEE Signal Process. Lett. 17(2), 165–168 (2010)
K. Pelekanakis, M. Chitre, New sparse adaptive algorithms based on the natural gradient and the \(L_{0}\)-norm. IEEE J. Ocean. Eng. 38(2), 323–332 (2013)
A.H. Sayed, Fundamentals of Adaptive Filtering (Wiley, New York, 2003)
Y. Yu, H. Zhao, A band-independent variable step size proportionate normalized subband adaptive filter algorithm. Int. J. Electron. Commun. 70(9), 1179–1186 (2016)
Y. Yu, H. Zhao, B. Chen, A new normalized subband adaptive filter algorithm with individual variable step sizes. Circuits Syst. Signal Process. 35(4), 1407–1418 (2016)
Y. Yu, H. Zhao, B. Chen, Sparse normalized subband adaptive filter algorithm with l0-norm constraint. J. Frankl. Inst. 353(18), 5121–5136 (2016)
Y. Yu, H. Zhao, A joint-optimization NSAF algorithm based on the first-order Markov model. Signal Image Video Process. (2016). doi:10.1007/s11760-016-0988-0
S. Zhang, J. Zhang, Transient analysis of zero attracting NLMS algorithm without Gaussian inputs assumption. Signal Process. 97, 100–109 (2014)
S. Zhang, J. Zhang, H. Han, Robust variable step-size decorrelation normalized least-mean-square algorithm and its application to acoustic echo cancellation. IEEE/ACM Trans. Audio Speech Lang. Process. 24(12), 2368–2376 (2016)
S. Zhao, Z. Man, S. Khoo, H.R. Wu, Stability and convergence analysis of transform-domain LMS adaptive filters with second-order autoregressive process. IEEE Trans. Signal Process. 57(1), 119–130 (2009)
H. Zhao, Z. Zheng, \(L_{0}\) norm constraint set-membership affine projection algorithm with coefficient vector reuse. Electron. Lett. 52(7), 560–562 (2016)
H. Zhao, Z. Zheng, Bias-compensated affine-projection-like algorithms with noisy input. Electron. Lett. 52(9), 712–714 (2016)
Z. Zheng, H. Zhao, Proportionate affine projection algorithm based on coefficient difference, in IEEE ICSPCC 2014, pp. 115–119
Z. Zheng, H. Zhao, Memory improved proportionate M-estimate affine projection algorithm. Electron. Lett. 51(6), 525–526 (2015)
Z. Zheng, H. Zhao, Affine projection M-estimate subband adaptive filters for robust adaptive filtering in impulsive noise. Signal Process. 120, 64–70 (2016)
Z. Zheng, H. Zhao, Bias-compensated normalized subband adaptive filter algorithm. IEEE Signal Process. Lett. 23(6), 809–813 (2016)
Acknowledgements
The authors would like to thank the Editor and the reviewers for the valuable comments and suggestions. The authors would also like to thank Dr. Junbo Zhao (Virginia Polytechnic Institute and State University, USA) and other colleagues for polishing the language.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Qu, Z., Zheng, Z. An Efficient \(L_{0}\) Norm Constraint Memory Improved Proportionate Affine Projection Algorithm. Circuits Syst Signal Process 36, 3448–3456 (2017). https://doi.org/10.1007/s00034-016-0467-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-016-0467-4