Skip to main content
Log in

Adaptive Modified Input and State Estimation for Linear Discrete-Time System with Unknown Inputs

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper is concerned with the problem of simultaneously estimating the state and the input of a linear discrete-time system. In order to improve the accuracy of estimation, a reasonable assumption about the unknown input is proposed. Based on this assumption, a modified input estimation is obtained, and then the optimal state estimation is derived strictly. Moreover, in order to effectively deal with the possible saltations of the unknown input, an adaptive estimation method is also developed. Simulation results illustrate the effectiveness and applicability of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.D. Anderson, J.B. Moore, Optimal Filtering (Prentice-Hall, Englewood Cliffs, 1979)

    MATH  Google Scholar 

  2. J. Chen, R.J. Patton, Optimal filtering and robust fault diagnosis of stochastic systems with unknown disturbances. IEEE Proc. Control Theory Appl. 143(1), 31–36 (1996)

    Article  MATH  Google Scholar 

  3. Y. Cheng, H. Ye, Y. Wang, D. Zhou, Unbiased minimum-variance state estimation for linear systems with unknown input. Automatica 45(2), 485–491 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Darouach, M. Zasadzinski, Unbiased minimum variance estimation for systems with unknown exogenous inputs. Automatica 33(4), 717–719 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Ding, J. Xiao, Y. Zhang, M.N. Iqbal, Distributed state estimation for discrete-time nonlinear system with unknown inputs. Circuits Syst. Signal Process. 33(11), 3421–3441 (2014)

    Article  MATH  Google Scholar 

  6. H. Fang, R.D. Callafon, On the asymptotic stability of minimum-variance unbiased input and state estimation. Automatica 48(12), 3183–3186 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Gillijns, B.D. Moor, Unbiased minimum-variance input and state estimation for linear discrete-time systems. Automatica 43(1), 111–116 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Gillijns, B.D. Moor, Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough. Automatica 43(5), 934–937 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. F.B. Hmida, K. Khmiri, J. Ragot, M. Gossa, Three-stage Kalman filter for state and fault estimation of linear stochastic systems with unknown inputs. J. Frankl. Inst. 349(7), 2369–2388 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. C.S. Hsieh, Robust two-stage kalman filters for systems with unknown inputs. IEEE Trans. Autom. Control. 45(12), 2374–2378 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. C.S. Hsieh, On the global optimality of unbiased minimum-variance state estimation for systems with unknown inputs. Automatica 46(4), 708–715 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. C.S. Hsieh, State estimation for descriptor systems via the unknown input filtering method. Automatica 49(5), 1281–1286 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Jiang, H. Fang, F. Pan, Robust fault detection for nonlinear networked systems with multiple fading measurements. Circuits Syst. Signal Process. 34(9), 2873–2891 (2015)

    Article  MathSciNet  Google Scholar 

  14. P.K. Kitanidis, Unbiased minimum-variance linear state estimation. Automatica 23(6), 775–778 (1987)

    Article  MATH  Google Scholar 

  15. J.Y. Keller, M. Darouach, L. Caramelle, Kalman filter with unknown inputs and robust two-stage filter. Int. J. Syst. Sci. 29(1), 41–47 (1998)

    Article  Google Scholar 

  16. T. Kailath, A.H. Sayed, B. Hassibi, Linear Estimation, vol. 1 (Prentice Hall, Upper Saddle River, 2000)

    MATH  Google Scholar 

  17. Z. Luo, H. Fang, Y. Luo, Constrained state estimation for nonlinear systems with unknown input. Circuits Syst. Signal Process. 32(5), 2199–2211 (2013)

    Article  MathSciNet  Google Scholar 

  18. B. Li, State estimation with partially observed inputs: a unified kalman filtering approach. Automatica 49(3), 816–820 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Li, G. Zhao, J. Huang, Exact state estimation for linear systems with unbounded disturbances. Circuits Syst. Signal Process. 34(5), 1519–1533 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Pan, W. Sun, H. Gao, J. Yu, Finite-time stabilization for vehicle active suspension systems with hard constraints. IEEE Trans. Intell. Transp. 16(5), 2663–2672 (2015)

    Article  Google Scholar 

  21. H. Pan, W. Sun, H. Gao, X. Jing, Disturbance observer-based adaptive tracking control with actuator saturation and its application. IEEE Trans. Autom. Sci. Eng. 13(2), 868–875 (2016)

    Article  Google Scholar 

  22. D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches (Wiley, New York, 2006)

    Book  Google Scholar 

  23. J. Su, B. Li, W.H. Chen, On existence, optimality and asymptotic stability of the kalman filter with partially observed inputs. Automatica 53, 149–154 (2015)

    Article  MathSciNet  Google Scholar 

  24. W. Sun, H. Pan, H. Gao, Filter-based adaptive vibration control for active vehicle suspensions with electrohydraulic actuators. IEEE Trans. Veh. Technol. 65(6), 4619–4626 (2016)

    Article  Google Scholar 

  25. H. Wang, J. Zhao, Z. Xu, Z. Shao, Input and state estimation for linear systems with a rank-deficient direct feedthrough matrix. ISA Trans. 57, 57–62 (2015)

    Article  Google Scholar 

  26. S.Z. Yong, M. Zhu, E. Frazzoli, A unified filter for simultaneous input and state estimation of linear discrete-time stochastic systems. Automatica 63, 321–329 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable and helpful comments which have improved the quality of the paper. This work was supported by the National Natural Science Foundation of China under Grant 61473127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajing Fang.

Appendix

Appendix

Proof of Theorem 1

In order to prove the invertible of \({\tilde{R}}^*_{k}\), by (36), we only need to prove that \((I_m-C_k{G_{k-1}}K^d_{k-1} M_{k})\) is invertible. To do this, it is only need to show that all the eigenvalue of \((I_m-C_k{G_{k-1}}K^d_{k-1} M_{k})\) are not equal to zero. Let the singular value decomposition of \({\tilde{R}}^{-1/2}_k C_k G_{k-1}\) be

$$\begin{aligned} {\tilde{R}}^{-1/2}_k C_k G_{k-1} = U_k \left[ \begin{array}{c}\varDelta _k\\ 0\end{array} \right] V^\mathrm {T}_k \end{aligned}$$
(74)

where \(\varDelta _k\) is a diagonal matrix with order q, \(U_k\) and \(V_k\) are orthogonal matrices.

Then matrix \(C_k G_{k-1}\) and \(M_k\) can be expressed as

$$\begin{aligned} C_k G_{k-1}= & {} {\tilde{R}}^{1/2}_k U_k \left[ \begin{array}{c}\varDelta _k\\ 0\end{array} \right] V^\mathrm {T}_k\end{aligned}$$
(75)
$$\begin{aligned} M_k= & {} V_k \left[ \varDelta ^{-1}_k \quad 0 \right] U^\mathrm {T}_k {\tilde{R}}^{-1/2} \end{aligned}$$
(76)

Then it follows that

$$\begin{aligned} C_k G_{k-1} K^d_{k-1} M_k = {\tilde{R}}^{1/2}_k U_k \left[ \begin{array}{cc} \varDelta _k V^\mathrm {T}_k K^d_{k-1} V_k \varDelta ^{-1}_k &{} 0\\ 0 &{} 0\end{array} \right] U^\mathrm {T}_k {\tilde{R}}^{-1/2}_k \end{aligned}$$
(77)

This indicates that matrix \(C_k G_{k-1} K^d_{k-1} M_k\) contains all the eigenvalues of \(K^d_{k-1}\) as its own eigenvalues, and the rest \((m-q)\) eigenvalues are equal to 0. Denote the eigenvalues of \(K^d_{k-1}\) as \(\alpha _i\), \((i=1,\ldots ,q)\), then the eigenvalues of \(C_k G_{k-1} K_k M_k\) can be represented by \((\alpha _1, \ldots , \alpha _q, 0, \ldots , 0)\), where the number of 0 is \((m-q)\). Therefore, it is easy to show that the eigenvalues of \((I_m - C_k {G_{k-1}}K^d_{k-1} M_{k})\) are \((1-\alpha _1, \ldots , 1-\alpha _q, 1, \ldots , 1)\), where the number of 1 is \((m-q)\). By Lemma 1(ii), we know that \(0<\alpha _i<1\), \((i=1,\ldots ,q)\), this means that all the eigenvalue of \((I_m - C_k {G_{k-1}}K^d_{k-1} M_{k})\) is not equal to zero. Hence, matrix \((I_m - C_k {G_{k-1}}K^d_{k-1} M_{k})\) is invertible and therefore \({\tilde{R}}^*_{k}\) is invertible. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, B., Fang, H. Adaptive Modified Input and State Estimation for Linear Discrete-Time System with Unknown Inputs. Circuits Syst Signal Process 36, 3630–3649 (2017). https://doi.org/10.1007/s00034-016-0475-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0475-4

Keywords

Navigation