Skip to main content

Advertisement

Log in

A Modified Variational Bayesian Noise Adaptive Kalman Filter

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Kalman filter suffers from performance degradation when applied to dynamic systems with unknown noise statistics. To address this problem, the variational Bayesian noise adaptive Kalman filter (VB-AKF) jointly estimates the state and noise using the variational Bayesian approximation method. In this paper, a modified variational Bayesian noise adaptive Kalman filter (VB-MAKF) is proposed by designing a novel dynamic model for tracking the variances of measurement noise. In the proposed dynamic model, the change in estimated noise variance is utilized to control a continuous and bounded function, which is specifically designed to follow the change in real noise variance, adaptively. We see from the numerical simulations that, in comparison with VB-AKF, the proposed VB-MAKF can achieve higher estimation accuracy of noise variances and thus provide higher estimation accuracy of states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Arasaratnam, S. Haykin, Cubature Kalman filters. IEEE Trans. Autom. Control 54(6), 1254–1269 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. I. Arasaratnam, S. Haykin, R.J. Elliott, Discrete-time nonlinear filtering algorithms using Gauss–Hermite quadrature. Proc. IEEE 95(5), 953–977 (2007)

    Article  Google Scholar 

  3. J. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heckerman, A. Smith, M. West et al., The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures. Bayesian stat. 7, 453–464 (2003)

    MathSciNet  Google Scholar 

  4. B. Chen, J. Liang, N. Zheng, J.C. Príncipe, Kernel least mean square with adaptive kernel size. Neurocomputing 191, 95–106 (2016)

    Article  Google Scholar 

  5. B. Chen, J. Wang, H. Zhao, N. Zheng, J.C. Príncipe, Convergence of a fixed-point algorithm under maximum correntropy criterion. IEEE Signal Process. Lett. 22(10), 1723–1727 (2015)

    Article  Google Scholar 

  6. Y. Huang, Y. Zhang, N. Li, L. Zhao, Design of sigma-point Kalman filter with recursive updated measurement. Circuits Syst. Signal Process. 35(5), 1767–1782 (2016)

    Article  MATH  Google Scholar 

  7. B. Jia, M. Xin, Y. Cheng, Sparse-grid quadrature nonlinear filtering. Automatica 48(2), 327–341 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Jia, M. Xin, Y. Cheng, High-degree cubature Kalman filter. Automatica 49(2), 510–518 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. S.J. Julier, J.K. Uhlmann, Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004)

    Article  Google Scholar 

  10. W. Li, Y. Jia, State estimation for jump Markov linear systems by variational Bayesian approximation. IET Control Theory Appl. 6(2), 319–326 (2012)

    Article  MathSciNet  Google Scholar 

  11. W. Li, Y. Jia, Adaptive filtering for jump Markov systems with unknown noise covariance. IET Control Theory Appl. 7(13), 1765–1772 (2013)

    Article  MathSciNet  Google Scholar 

  12. W. Li, S. Sun, Y. Jia, J. Du, Robust unscented Kalman filter with adaptation of process and measurement noise covariances. Digit. Signal Process. 48, 93–103 (2016)

    Article  MathSciNet  Google Scholar 

  13. I.S. Mbalawata, S. Särkkä, M. Vihola, H. Haario, Adaptive metropolis algorithm using variational Bayesian adaptive Kalman filter. Comput. Stat. Data Anal. 83, 101–115 (2015)

    Article  MathSciNet  Google Scholar 

  14. R. Mehra, Approaches to adaptive filtering. IEEE Trans. Autom. Control 17(5), 693–698 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. A.P. Sage, G.W. Husa, Adaptive filtering with unknown prior statistics, in Proceedings of Joint Automatic Control Conference, 7, pp. 760–769. IEEE, Boulder, Colorado (1969)

  16. S. Särkkä, Bayesian Filtering and Smoothing (Cambridge University Press, New York, 2013)

    Book  MATH  Google Scholar 

  17. S. Särkkä, J. Hartikainen, Non-linear noise adaptive Kalman filtering via variational Bayes, in Proceedings of International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE, Southampton, UK (2013)

  18. S. Särkkä, A. Nummenmaa, Recursive noise adaptive Kalman filtering by variational Bayesian approximations. IEEE Trans. Autom. Control 54(3), 596–600 (2009)

    Article  MathSciNet  Google Scholar 

  19. D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches (Wiley, Hoboken, New Jersey, USA, 2006)

  20. V. Šmídl, A. Quinn, The Variational Bayes Method in Signal Processing (Springer, New York, 2006)

    Google Scholar 

  21. W. Zhang, S. Wang, Y. Feng, Novel simplex Kalman filters. Circuits Syst. Signal Process. doi:10.1007/s00034-016-0323-6

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (61671389, 61672436, 61372139, 61571372), Fundamental and Frontier Research Project of Chongqing (cstc2014jcyjA40020), China Postdoctoral Science Foundation Funded Project (2016M590853), and Fundamental Research Funds for the Central Universities (XDJK2014B001, XDJK2016E029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Kai Duan.

Appendix

Appendix

This appendix shows the convergence feature of sequence \(\{{\hat{\alpha }}_{k, i}\}\) and \( \rho _i {\hat{\alpha }}_{k, i} \gg 1/2 \) when \( 0.6< \rho _i<1\).

The explicit formula of sequence \(\{{\hat{\alpha }}_{k, i}\}\) can be obtained from the following recursive form.

$$\begin{aligned} \alpha _{k+1, i}&=1/2 + \rho _{i} \alpha _{k, i}, \end{aligned}$$
(44)
$$\begin{aligned} \alpha _{k+2, i}&=1/2 + \rho _{i} \alpha _{k+1, i}. \end{aligned}$$
(45)

Subtracting (45) from (44), we have

$$\begin{aligned} \alpha _{k+2, i} - \alpha _{k+1, i} = \rho _{i} (\alpha _{k+1, i} - \alpha _{k, i}). \end{aligned}$$
(46)

Let \(b_{k,i} = \alpha _{k+1, i} - \alpha _{k, i}\). We rewrite (46) as

$$\begin{aligned} b_{k+1,i} = \rho _{i} b_{k, i}, \end{aligned}$$
(47)

where \( b_{1,i} = \alpha _{2,i} - \alpha _{1,i}=1/2 + \rho _{i} \alpha _{1,i} - \alpha _{1, i} \). Herein, the geometric progression \(\{ b_{k,i} \}\) can be written by the explicit form

$$\begin{aligned} b_{k,i} = \rho _{i}^{k-1} b_{1,i}. \end{aligned}$$
(48)

It follows from (46) that

$$\begin{aligned} \alpha _{k+1,i} - \alpha _{k,i} = \rho _{i}^{k-1} b_{1,i}. \end{aligned}$$
(49)

The dislocation subtraction gives

$$\begin{aligned}&\alpha _{k+1,i} - \alpha _{k,i} = \rho _{i}^{k-1} b_{1,i}, \end{aligned}$$
(50)
$$\begin{aligned}&\alpha _{k,i} - \alpha _{k-1,i} = \rho _{i}^{k-2} b_{1,i}, \end{aligned}$$
(51)
$$\begin{aligned}&\cdots \nonumber \\&\alpha _{2,i} - \alpha _{1,i} = b_{1,i}. \end{aligned}$$
(52)

Adding (50) to (52) together, we have

$$\begin{aligned} \alpha _{k+1,i} - \alpha _{1,i}&= b_{1,i} \sum _{j=0}^{k-1} \rho _{i}^{j} \nonumber \\&= \frac{b_{1,i}(1-\rho _{i}^{k})}{1-\rho _{i}}. \end{aligned}$$
(53)

If \(0.6 \le \rho _i < 1\), then

$$\begin{aligned} \lim _{k \rightarrow +\infty } \alpha _{k+1,i}&= \frac{b_{1,i}}{1-\rho _{i}} + \alpha _{1,i} \nonumber \\&= \frac{1/2 + \rho _{i} \alpha _{1,i} - \alpha _{1, i}}{1 - \rho _{i}} + \alpha _{1, i} \nonumber \\&= \frac{1/2}{1-\rho _{i}}. \end{aligned}$$
(54)

Thus, the sequence \( \{\alpha _{k+1, i}\}\) converges to \(\frac{1/2}{1-\rho _i}\). Also, from (54), we have \( \rho _{i} {\hat{\alpha }}_{k+1, i} \gg 1/2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SY., Yin, C., Duan, SK. et al. A Modified Variational Bayesian Noise Adaptive Kalman Filter. Circuits Syst Signal Process 36, 4260–4277 (2017). https://doi.org/10.1007/s00034-017-0497-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0497-6

Keywords