Skip to main content

Exponential Myriad Smoothing Algorithm for Robust Signal Processing in \(\alpha \)-Stable Noise Environments

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The sequential sample myriad has been proposed recently to estimate an unknown location parameter in real time by updating the current estimate when a new input sample is available. However, the algorithm is only capable of estimating an unknown constant (i.e., a time-invariant location parameter). In this paper, we propose a sequential myriad smoothing approach for tracking a time-varying location parameter corrupted by impulsive symmetric \(\alpha \)-stable noise. By incorporating exponential weighting factor to the sequential algorithm, the new algorithm weighs the recent samples more heavily to provide effective tracking capability. Simulation results show that the proposed method outperforms the classical exponential smoothing and is as good as the running myriad smoother.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.R. Arce, Nonlinear Signal Processing : A Statistical Approach (Wiley, New Jersey, 2005)

    MATH  Google Scholar 

  2. P.J. Brockwell, R.A. Davis, Introduction to Time Series and Forecasting (Springer, Berlin, 2002)

    Book  MATH  Google Scholar 

  3. S.C. Chan, Y. Zou, A recursive least M-estimate algorithm for robust adaptive filtering in impulsive noise: fast algorithm and convergence analysis. IEEE Trans. Signal Process. 52(4), 975–991 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Chen, L. Xing, Z. Wu, J. Liang, J.C. Principe, N. Zheng, Smoothed least mean p-power error criterion for adaptive filtering. Digit. Signal Process. 40, 900–903 (2014)

    MathSciNet  Google Scholar 

  5. B.M. Goh, H.S. Lim, Sequential algorithms for sample myriad and weighted myriad filter. IEEE Trans. Signal Process. 60(11), 6047–6052 (2012)

    Article  MathSciNet  Google Scholar 

  6. J.G. Gonzalez, Robust techniques for wireless communications in non-Gaussian environments. Dissertation, University of Delaware (1997)

  7. J.G. Gonzalez, G.R. Arce, Optimality of the myriad filter in practical impulsive-noise environments. IEEE Trans. Signal Process. 49(2), 438–441 (2001)

    Article  Google Scholar 

  8. J.G. Gonzalez, J.L. Paredes, G.R. Arce, Zero-order statistics: a mathematical framework for the processing and characterization of very impulsive signals. IEEE Trans. Signal Process. 54(10), 3839–3851 (2006)

    Article  Google Scholar 

  9. J. He, Z. Liu, K.T. Wong, Linearly constrained minimum - “geometric power” adaptive beamforming using logarithmic moments of data containing heavy-tailed noise of unknown statistics. IEEE Antennas Wireless Propag. Lett 6, 600–603 (2007)

    Article  Google Scholar 

  10. J. He, Z. Liu, K.T. Wong, Snapshot-instantaneous \(\vert \vert. \vert \vert \infty \) normalization against heavy-tail noise. IEEE Trans. Aerosp. Electron. Syst 44(3), 1221–1227 (2008)

    Article  Google Scholar 

  11. S. Kalluri, G.R. Arce, Fast algorithms for weighted myriad computation by fixed-point search. IEEE Trans. Signal Process. 48(1), 159–171 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. H.S. Lim, T.C. Chuah, H.T. Chuah, On the optimal alpha-k curve of the sample myriad. IEEE Signal Process. Lett. 14(8), 545–548 (2007)

    Article  Google Scholar 

  13. R.G. Lyons, Understanding Digital Signal Processing (Prentice Hall, New Jersey, 2001)

    Google Scholar 

  14. R.C. Nunez, J.G. Gonzalez, G.R. Arce, J.P. Nolan, Fast and accurate computation of the myriad filter via branch-and-bound search. IEEE Trans. Signal Process. 56(7), 3340–3346 (2008)

    Article  MathSciNet  Google Scholar 

  15. T. Pander, Myriad filter computation with 2nd order approximation polynomial. Inf. Technol. Biomed. 69, 239–250 (2010)

    Article  MATH  Google Scholar 

  16. A.A. Roenko, V.V. Lukin, I. Djurovic, Two approaches to adaptation of sample myriad to characteristics of \(\text{ S }\alpha \text{ S }\) distribution data. Signal Processing. 90(7), 2113–2123 (2010)

    Article  MATH  Google Scholar 

  17. B. Yue, Z. Peng, Y.He, Q. Zhang, Impulsive noise suppression using fast myriad filter in seismic signal processing. in Proceedings of International Conference on Computational and Information Sciences (Shiyang, China, 2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benny Ming Kai Goh.

Appendix

Appendix

1.1 Derivation of Exponential Myriad Smoothing

The myriad smoother \({\hat{\theta }}\left[ n \right] \) based on n observations is the solution of the following equation

$$\begin{aligned} \mathop \sum \limits _{i=1}^n \frac{\eta _i \left( {y_i -\theta } \right) }{k^{2}+\left( {y_i -\theta } \right) ^{2}}=0 \end{aligned}$$
(11)

Substituting \(\eta _i =\lambda ^{n-i}\), (11) can be written as

$$\begin{aligned} \mathop \sum \limits _{i=1}^n \frac{\lambda ^{n-i}\left( {y_i -\theta } \right) }{k^{2}+\left( {y_i -\theta } \right) ^{2}}=0 \end{aligned}$$
(12)

Let

$$\begin{aligned} \psi _\theta \left[ n \right] =\mathop \sum \limits _{i=1}^n \frac{\lambda ^{n-i}\left( {y_i -\theta } \right) }{k^{2}+\left( {y_i -\theta } \right) ^{2}} \end{aligned}$$
(13)

The first-order Taylor series of \(\psi _\theta \left[ {n+1} \right] \) about the point \(\theta ={\hat{\theta }}\left[ n \right] \) is given by

$$\begin{aligned} \psi _\theta \left[ {n+1} \right] \approx \psi _{{\hat{\theta }}\left[ n \right] } \left[ {n+1} \right] +{\psi }^{\prime }_{{\hat{\theta }}\left[ n \right] } \left( {n+1} \right) \left( \theta -{\hat{\theta }}[n]\right) \end{aligned}$$
(14)

where

$$\begin{aligned} {\psi }^{\prime }_{\hat{\theta }[n]} [n+1] =\frac{\partial \psi _{\theta }[n+1]}{\partial \theta }\Bigg |_{\theta ={\hat{\theta }}[n]} \end{aligned}$$
(15)

Replacing \(\theta ={\hat{\theta }}\left[ {n+1} \right] \) in (14) and since \(\psi _{{\hat{\theta }}\left[ {n+1} \right] } \left[ {n+1} \right] \approx 0\), (14) can be rewritten as follows:

$$\begin{aligned} {\hat{\theta }}\left[ {n+1} \right] \approx {\hat{\theta }}\left[ n \right] -\frac{\psi _{{\hat{\theta }}\left[ n \right] } \left[ {n+1} \right] }{{\psi }^{\prime }_{\hat{\theta } \left[ n \right] }\left[ {n+1} \right] } \end{aligned}$$
(16)

By using the definition of \(\psi _\theta \left[ n \right] \)in (13), we have

$$\begin{aligned} \psi _\theta \left[ {n+1} \right]= & {} \mathop \sum \limits _{i=1}^{n+1} \frac{\lambda ^{n+1-i}\left( {y_i -\theta } \right) }{k^{2}+\left( {y_i -\theta } \right) ^{2}}\nonumber \\= & {} \lambda \psi _\theta \left[ n \right] +\frac{y_{n+1} -\theta }{k^{2}+\left( {y_{n+1} -\theta } \right) ^{2}} \end{aligned}$$
(17)

Substituting \(\theta \) with \({\hat{\theta }}\left[ n \right] \) and since \(\psi _{{\hat{\theta }}\left[ n \right] } \left[ n \right] \approx 0\), (17) can be rewritten as

$$\begin{aligned} \psi _{{\hat{\theta }}\left[ n \right] } \left[ {n+1} \right] \approx \frac{y_{n+1} -{\hat{\theta }}\left[ n \right] }{k^{2}+\left( {y_{n+1} -{\hat{\theta }}\left[ n \right] } \right) ^{2}} \end{aligned}$$
(18)

Now, the problem is to find the updates that define \(\psi ^{{\prime }}_{{\hat{\theta }}\left[ n \right] } \left[ {n+1} \right] \) in terms of \(\psi ^{{\prime }}_{{\hat{\theta }}\left[ n-1 \right] } \left[ {n} \right] \). From (13) and (15), we have

$$\begin{aligned} {\psi }^{\prime }_{\theta } [n+1]= & {} {\mathop \sum \limits _{i=1}^{n+1}} \frac{\lambda ^{n+1-i}[-k^{2}+(y_{i}-\theta )^{2}]}{[k^{2}+(y_{i} -\theta )^{2}]^{2}}\nonumber \\= & {} \lambda \psi ^{\prime }_{\theta }[n]+\frac{-k^{2}+(y_{n+1}-\theta )^{2}}{[k^{2}+(y_{n+1} -\theta )^{2}]^{2}} \end{aligned}$$
(19)

Substituting \(\theta ={\hat{\theta }}\left[ n \right] \) in (19) yields

$$\begin{aligned} \psi ^{\prime }_{\hat{\theta }[n]}[n+1]= & {} \lambda \psi ^{{\prime }}_{{\hat{\theta }}\left[ {n}\right] } \left[ n \right] +\frac{-k^{2}+\left( {y_{n+1} -{\hat{\theta }}\left[ n \right] } \right) ^{2}}{\left[ {k^{2}+\left( {y_{n+1} -{\hat{\theta }}\left[ n \right] } \right) ^{2}} \right] ^{2}} \end{aligned}$$
(20)
$$\begin{aligned}\approx & {} \lambda \psi ^{{\prime }}_{{\hat{\theta }}\left[ {n-1} \right] } \left[ n \right] +\frac{-k^{2}+\left( {y_{n+1} -{\hat{\theta }}\left[ n \right] } \right) ^{2}}{\left[ {k^{2}+\left( {y_{n+1} -{\hat{\theta }}\left[ n \right] } \right) ^{2}} \right] ^{2}} \end{aligned}$$
(21)

1.2 Convergence of Exponential Myriad Smoothing to Classical Exponential Smoothing

From (7), let \(\hbox {k}\rightarrow \infty \), and we have

$$\begin{aligned} {\hat{J}} \left[ n \right]= & {} \mathop \sum \limits _{i=1}^n \frac{-k^{2}+\left( {y_i -{\hat{\theta }}\left[ {n-1} \right] } \right) ^{2}}{\left[ {k^{2}+\left( {y_i -{\hat{\theta }}\left[ {n-1} \right] } \right) ^{2}} \right] ^{2}} \nonumber \\\approx & {} \mathop \sum \limits _{i=1}^n \frac{-1}{k^{2}} \nonumber \\= & {} -\frac{n}{k^{2}} \end{aligned}$$
(22)

Substituting (22) into (8), the following expression for \({\hat{J}} \left[ {n+1} \right] \) can be simplified as

$$\begin{aligned} {\hat{J}} \left[ {n+1} \right]= & {} \lambda {\hat{J}} \left[ n \right] +\frac{-k^{2}+\left( {y_{n+1} -{\hat{\theta }}\left[ n \right] } \right) ^{2}}{\left[ {k^{2}+\left( {y_{n+1} -{\hat{\theta }}\left[ n \right] } \right) ^{2}} \right] ^{2}}\nonumber \\\approx & {} -\frac{n\lambda }{k^{2}}-\frac{1}{k^{2}}\nonumber \\= & {} -\frac{n\lambda +1}{k^{2}} \end{aligned}$$
(23)

Similarly, for the next iteration, \({\hat{J}} \left[ {n+2} \right] \) will be updated as

$$\begin{aligned} {\hat{J}} \left[ {n+2} \right]\approx & {} \lambda {\hat{J}} \left[ {n+1} \right] -\frac{1}{k^{2}}\nonumber \\= & {} -\frac{n\lambda ^{2}+\lambda +1}{k^{2}} \end{aligned}$$
(24)

Hence, in general, for \(i\ge 1,\)

$$\begin{aligned} {\hat{J}} \left[ {n+i} \right]\approx & {} \lambda {\hat{J}} \left[ {n+i-1} \right] -\frac{1}{k^{2}}\nonumber \\= & {} -\frac{n\lambda ^{i}+\mathop \sum \nolimits _{m=0}^{i-1} \lambda ^{m}}{k^{2}} \end{aligned}$$
(25)

and

$$\begin{aligned} {\hat{\theta }}\left[ {n+i} \right]= & {} {\hat{\theta }}\left[ {n+i-1} \right] -\left( {{\hat{J}} \left[ {n+i} \right] } \right) ^{-1}\frac{y_{n+i} -{\hat{\theta }}\left[ {n+i-1} \right] }{k^{2}+\left( {y_{n+i} -{\hat{\theta }}\left[ {n+i-1} \right] } \right) ^{2}}\nonumber \\\approx & {} {\hat{\theta }}\left[ {n+i-1} \right] +\left( {\frac{k^{2}}{n\lambda ^{i}+\mathop \sum \nolimits _{m=0}^{i-1} \lambda ^{m}}} \right) \frac{y_{n+i} -{\hat{\theta }}\left[ {n+i-1} \right] }{k^{2}}\nonumber \\= & {} {\hat{\theta }}\left[ {n+i-1} \right] +\left( {\frac{1}{n\lambda ^{i}+\mathop \sum \nolimits _{m=0}^{i-1} \lambda ^{m}}} \right) \left( {y_{n+i} -{\hat{\theta }}\left[ {n+i-1} \right] } \right) \end{aligned}$$
(26)

Consider \(i\rightarrow \infty \) and since \(\lambda <1\), then \(n\lambda ^{i}\rightarrow 0\) and \(\mathop \sum \nolimits _{m=0}^{i-1} \lambda ^{m}\rightarrow \frac{1}{1-\lambda }\)

$$\begin{aligned} {\hat{\theta }}\left[ {n+i} \right] \approx {\hat{\theta }}\left[ {n+i-1} \right] +\left( {1-\lambda } \right) \left( {y_{n+i} -{\hat{\theta }}\left[ {n+i-1} \right] } \right) \end{aligned}$$
(27)

1.3 Asymptotic Variance of the Exponential Myriad Smoothing

From (13), we have

$$\begin{aligned} \mathop \sum \limits _{i=1}^n \psi _\theta \left( {y_i -\theta } \right) =0 \end{aligned}$$
(28)

where \(\psi _\theta \left( x \right) =\frac{\eta x}{k^{2}+x^{2}}\).

The asymptotic variance of exponential myriad smoother at a distribution F can be defined as

$$\begin{aligned} \sigma _\theta ^2 \left( {\psi _\theta ;F} \right) =\frac{\smallint \psi _\theta ^2 \left( x \right) \hbox {d}F}{\left( {\smallint \psi _\theta ^{\prime } \left( x \right) \hbox {d}F} \right) ^{2}} \end{aligned}$$
(29)

and \(\psi _\theta ^{\prime } \left( x \right) =\hbox {d}\psi _\theta \left( x \right) /\hbox {d}x\) [12].

Substituting \(\psi _\theta \left( x \right) =\frac{\eta x}{k^{2}+x^{2}}\) in (29) yields

$$\begin{aligned} \sigma _\theta ^2 \left( {\psi _\theta ;F} \right)= & {} \frac{\displaystyle \int \frac{\eta ^{2}x^{2}}{\left( {k^{2}+x^{2}} \right) ^{2}}f_\alpha \left( x \right) \hbox {d}x}{\left( {\displaystyle \int \frac{\eta \left( {k^{2}-x^{2}} \right) }{\left( {k^{2}+x^{2}} \right) ^{2}}f_\alpha \left( x \right) \hbox {d}x} \right) ^{2}} \end{aligned}$$
(30)
$$\begin{aligned}= & {} \frac{\displaystyle \int \frac{x^{2}}{\left( {k^{2}+x^{2}} \right) ^{2}}f_\alpha \left( x \right) \hbox {d}x}{\left( {\displaystyle \int \frac{\left( {k^{2}-x^{2}} \right) }{\left( {k^{2}+x^{2}} \right) ^{2}}f_\alpha \left( x \right) \hbox {d}x} \right) ^{2}} \end{aligned}$$
(31)

where \(f_\alpha \left( x \right) \) is the distribution function. Eq. (31) shows that the exponential myriad smoother has the same asymptotic variance as the sample myriad given in [12].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goh, B.M.K., Lim, H.S. & Tan, A.W.C. Exponential Myriad Smoothing Algorithm for Robust Signal Processing in \(\alpha \)-Stable Noise Environments. Circuits Syst Signal Process 36, 4468–4481 (2017). https://doi.org/10.1007/s00034-017-0523-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0523-8

Keywords