Skip to main content
Log in

Signal Denoising Using Optimized Trimmed Thresholding

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The problem of recovering a desired signal from a recording corrupted by a background additive white Gaussian noise is considered. The undecimated wavelet transform of the noisy recorded signal is taken, and the resulting detail coefficients are thresholded for the purpose of extracting the desired signal. Simple techniques exist for performing the thresholding operation such as the hard, soft and trimmed thresholding methods. Donoho and Johnstone developed a method for selecting the threshold value at every resolution level by minimizing the Stein’s unbiased risk estimator (SURE) function while adopting the simple thresholding rationale. They next contributed a hybrid scheme which either uses the last mentioned threshold or defaults to a universal threshold value if the wavelet coefficients are sparse. In the present paper a hybrid scheme is proposed where the trimmed thresholding rationale rather than the soft thresholding rationale is adopted. An expression is first derived for the SURE function for the case of trimmed thresholding before applying the optimization technique. Moreover, instead of using a fixed value of the trimming parameter alpha, a heuristic approach is followed for choosing an optimal value of this parameter. A comparative simulation study is carried out including both standard test signals and electrocardiogram signals. The simulation results testify to the merit of the contributed method. They show an improvement in the signal-to-noise ratio of the denoised signals extracted by the proposed scheme over those obtained by the universal threshold with hard thresholding and the hybrid SURE threshold with soft thresholding or any non-wavelet-based technique such as the short-time Fourier transform block thresholding, the spectral subtraction or the phase spectrum compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Alfaouri, K. Daqrouq, ECG signal denoising by wavelet transform thresholding. Am. J. Appl. Sci. 5(3), 276–281 (2008). doi:10.3844/ajassp.2008.276.281

    Article  Google Scholar 

  2. A. Antoniadis, J. Bigot, T. Sapatinas, Wavelet estimators in nonparametric regression: a comparative simulation study. J. Stat. Softw. 6(6), 1–83 (2001)

    Article  Google Scholar 

  3. S. Boll, Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans. Acoust. Speech Signal Process. 27(2), 113–120 (1979). doi:10.1109/TASSP.1979.1163209

    Article  Google Scholar 

  4. T.T. Cai, B.W. Silverman, Incorporating information on neighbouring coefficients into wavelet estimation. Sankhyā Indian J. Stat. Ser. B (1960–2002) 63(2), 127–148 (2001)

  5. S.G. Chang, B. Yu, M. Vetterli, Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9(9), 1532–1546 (2000)

  6. R. Cohen, Signal denoising using wavelets, in Department of Electrical Engineering (Technician, Israel Institute of Technology, Haifa, Israel, 2012)

    Google Scholar 

  7. R.R. Coifman, D.L. Donoho, Translation-invariant de-noising, in Wavelets and Statistics, vol. 103, Lecture Notes in Statistics, ed. by A. Antoniadis, G. Oppenheim (Springer, New York, 1995), pp. 125–150

    Chapter  Google Scholar 

  8. D.L. Donoho, I.M. Johnstone, Minimax Estimation Via Wavelet Shrinkage, in Department of Statistics (Stanford University, Stanford, California, USA, 1992)

    Google Scholar 

  9. D.L. Donoho, De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. D.L. Donoho, J.M. Johnstone, Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994). doi:10.1093/biomet/81.3.425

    Article  MathSciNet  MATH  Google Scholar 

  11. D.L. Donoho, J.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. H.-T. Fang, D.-S. Huang, Wavelet de-noising by means of trimmed thresholding, in The Fifth IEEE World Congress on Intelligent Control and Automation (WCICA 2004) June 2004, pp. 1621–1624

  13. H. Fang, D. Huang, Lidar signal de-noising based on wavelet trimmed thresholding technique. Chin. Opt. Lett. 2(1), 1–3 (2004)

  14. A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.-K. Peng, H.E. Stanley, Components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  15. D.-F. Guo, W.-H. Zhu, Z.-M. Gao, J.-Q. Zhang, A study of wavelet thresholding denoising, in 5th International Conference on Signal Processing (WCCC-ICSP 2000), Beijing, China August 21–25, 2000, pp. 329–332

  16. M.A. Hassanein, M.T.M.M. Elbarawy, N.P.A. Seif, M.T. Hanna, Trimmed thresholding with sure for denoising signals, in 55th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Boise, Idaho, USA August 05–08, (2012), pp. 1024–1027

  17. P. Hedaoo, S.S. Godbole, Wavelet thresholding approach for image denoising. Int. J. Netw. Secur. Appl. (IJNSA) 3(4), 16–21 (2011). doi:10.5121/ijnsa.2011.3402

    Google Scholar 

  18. M. Holschneider, R. Kronland-Martinet, J. Morlet, P. Tchamitchian, A real-time algorithm for signal analysis with the help of the wavelet transform, in Wavelets: Time-Frequency Methods and Phase Space, Proceedings of the International Conference, Marseille, France, December 14–18, 1987, ed. By J.-M. Combes, A. Grossmann, P. Tchamitchian (Springer, Berlin, 1990), pp. 286–297

  19. M.T. Johnson, X. Yuan, Y. Ren, Speech signal enhancement through adaptive wavelet thresholding. Speech Commun. 49(2), 123–133 (2007). doi:10.1016/j.specom.2006.12.002

    Article  Google Scholar 

  20. M. Lang, H. Guo, J.E. Odegard, C.S. Burrus, R.O. Wells, Noise reduction using an undecimated discrete wavelet transform. IEEE Signal Process. Lett. 3(1), 10–12 (1996). doi:10.1109/97.475823

    Article  Google Scholar 

  21. F. Qiang, E.A. Wan, Perceptual wavelet adaptive denoising of speech, in 8th European Conference on Speech Communication and Technology (EUROSPEECH), Geneva, Switzerland September 1–4, (2003), pp. 1–4. ISCA

  22. J.-L. Starck, J. Fadili, F. Murtagh, The undecimated wavelet decomposition and its reconstruction. IEEE Trans. Image Process. 16(2), 297–309 (2007). doi:10.1109/TIP.2006.887733

    Article  MathSciNet  Google Scholar 

  23. A.P. Stark, K.K. W’ojcicki, J.G. Lyons, K.K. Paliwal, Noise driven short-time phase spectrum compensation procedure for speech enhancement, in Interspeech, Brisbane, Australia September 22–26, (2008), pp. 549–552

  24. M.C. Stein, Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9(6), 1135–1151 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Su, G. Zhao, De-noising of ECG signal using translation-Invariant wavelet de-noising method with improved thresholding, in The 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE-EMBS 2005), Shanghai, China January 17–18, (2006), pp. 5946–5949

  26. G. Yu, S. Mallat, E. Bacry, Audio denoising by time-frequency block thresholding. IEEE Trans. Signal Process. 56(5), 1830–1839 (2008). doi:10.1109/TSP.2007.912893

  27. X.-P. Zhang, M.D. Desai, Adaptive denoising based on SURE risk. IEEE Signal Process. Lett. 5(10), 265–267 (1998). doi:10.1109/97.720560

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maha A. Hassanein.

Appendix A

Appendix A

[Derivation of (15a)]

Let

$$\begin{aligned} h\left( x \right) =\hbox {sgn}\left( x \right) \frac{1}{\left| x \right| ^{\left( {\alpha -1} \right) }}, \end{aligned}$$
(A.1)

where \(\hbox {sgn}\left( x \right) \) is the signum function defined by:

$$\begin{aligned} \hbox {sgn}\left( x \right) =\left\{ {{ \begin{array}{ll} 1 &{} \quad x>0 \\ 0 &{} \quad x=0 \\ -1 &{} \quad x<0. \\ \end{array} }} \right. \end{aligned}$$
(A.2)

The above equation can be compactly expressed as:

$$\begin{aligned} \hbox {sgn}\left( x \right) =2u\left( x \right) -1, \end{aligned}$$
(A.3)

where \(u\left( x \right) \) is the unit step function defined by:

$$\begin{aligned} u\left( x \right) =\left\{ {{ \begin{array}{ll} 1 &{} \quad x>0 \\ 0.5 &{} \quad x=0 \\ 0 &{} \quad x<0. \\ \end{array} }} \right. \end{aligned}$$
(A.4)

The derivative of (A.3) is given by:

$$\begin{aligned} \frac{\hbox {d}}{\hbox {d}x}\left[ {\hbox {sgn}\left( x \right) } \right] =2\delta \left( x \right) , \end{aligned}$$
(A.5)

where \(\delta \left( x \right) \) is the Dirac delta function.

Let \(\psi \left( x \right) \) be the absolute value function defined by:

$$\begin{aligned} \psi \left( x \right) =\left| x \right| =\left\{ {{ \begin{array}{ll} x&{} \quad x\ge 0 \\ -x &{} \quad x\le 0. \\ \end{array} }} \right. \end{aligned}$$
(A.6)

The derivative of the above equation is:

$$\begin{aligned} \frac{\hbox {d}\psi \left( x \right) }{\hbox {d}x}=\left\{ {{ \begin{array}{ll} 1 &{} \quad x>0 \\ -1&{} \quad x<0. \\ \end{array} }} \right. \end{aligned}$$
(A.7)

By comparing (A.2) and (A.7) and ignoring the case of \(x=0\), one gets:

$$\begin{aligned} \frac{\hbox {d}\psi \left( x \right) }{\hbox {d}x}=\hbox {sgn}\left( x \right) . \end{aligned}$$
(A.8)

Based on definition (A.6), one can express (A.1) as:

$$\begin{aligned} h\left( x \right) =\hbox {sgn}\left( x \right) \frac{1}{\left[ {\psi \left( x \right) } \right] ^{\left( {\alpha -1} \right) }}. \end{aligned}$$
(A.9)

By taking the derivative of the above equation, one obtains:

$$\begin{aligned} \frac{\hbox {d}h\left( x \right) }{\hbox {d}x}=-\hbox {sgn}\left( x \right) \left( {\alpha -1} \right) \left[ {\psi \left( x \right) } \right] ^{-\alpha }\frac{\hbox {d}\psi }{\hbox {d}x}+\frac{1}{\left[ {\psi \left( x \right) } \right] ^{\left( {\alpha -1} \right) }}\frac{\hbox {d}}{\hbox {d}x}\left[ {\hbox {sgn}\left( x \right) } \right] .\qquad \quad \end{aligned}$$
(A.10)

Upon utilizing (A.5) and (A.8), the above equation reduces to:

$$\begin{aligned} \frac{\hbox {d}h\left( x \right) }{\hbox {d}x}=\frac{-\left( {\alpha -1} \right) }{\left[ {\psi \left( x \right) } \right] ^{\alpha }}+\frac{2}{\left[ {\psi \left( x \right) } \right] ^{\left( {\alpha -1} \right) }}\delta \left( x \right) . \end{aligned}$$
(A.11)

Based on definition (A.1), one can express (14) as:

$$\begin{aligned} g_j \left( X \right) =-X_j \,I\left( j \right) -{\lambda }^{{\alpha }}\hbox {h}\left( {X_j } \right) \acute{I} \left( j \right) . \end{aligned}$$
(A.12)

By taking the partial derivative of the above equation with respect to \(X_j \) and applying (A.11), one gets:

$$\begin{aligned} \frac{\partial g_j \left( X \right) }{\partial X_j }=-I\left( j \right) -\lambda ^{\alpha }\left\{ {\frac{-\left( {\alpha -1} \right) }{\left[ {\psi \left( {X_j } \right) } \right] ^{\alpha }}+\frac{2}{\left[ {\psi \left( {X_j } \right) } \right] ^{\left( {\alpha -1} \right) }}\delta \left( {X_j } \right) } \right\} \acute{I} \left( j \right) .\qquad \quad \end{aligned}$$
(A.13)

By virtue of (A.6), the above equation reduces to (15a). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanein, M.A., Hanna, M.T., Seif, N.P.A. et al. Signal Denoising Using Optimized Trimmed Thresholding. Circuits Syst Signal Process 37, 2413–2432 (2018). https://doi.org/10.1007/s00034-017-0665-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0665-8

Keywords

Navigation