Skip to main content
Log in

A Recursive Identification Algorithm for Wiener Nonlinear Systems with Linear State-Space Subsystem

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper addresses the problem of recursive identification of Wiener nonlinear systems whose linear subsystems are observable state-space models. The maximum likelihood principle and the recursive identification technique are employed to develop a recursive maximum likelihood identification algorithm which estimates the unknown parameters and the system states interactively. In comparison with the developed recursive maximum likelihood algorithm, a recursive generalized least squares algorithm is also proposed for identification of such Wiener systems. The performance of the developed algorithms is validated by two illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.I. Biagiola, J.L. Figueroa, Identification of uncertain MIMO Wiener and Hammerstein models. Comput. Chem. Eng. 35(12), 2867–2875 (2011)

    Article  Google Scholar 

  2. F. Ding, Combined state and least squares parameter estimation algorithms for dynamic systems. Appl. Math. Model. 38(1), 403–412 (2014)

    Article  MathSciNet  Google Scholar 

  3. F. Ding, L. Xu, Q.M. Zhu, Performance analysis of the generalised projection identification for time-varying systems. IET Control Theory Appl. 10(18), 2506–2514 (2016)

    Article  MathSciNet  Google Scholar 

  4. F. Ding, X.H. Wang, L. Mao, L. Xu, Joint state and multi-innovation parameter estimation for time-delay linear systems and its convergence based on the Kalman filtering. Digit. Signal Process. 62, 211–223 (2017)

    Article  Google Scholar 

  5. F. Ding, F.F. Wang, L. Xu, M.H. Wu, Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering. J. Frankl. Inst. 354(3), 1321–1339 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Ding, F.F. Wang, T. Hayat, A. Alsaedi, Parameter estimation for pseudo-linear systems using the auxiliary model and the decomposition technique. IET Control Theory Appl. 11(3), 390–400 (2017)

    Article  MathSciNet  Google Scholar 

  7. W. Favoreel, B. De Moor, P.V. Overschee, Subspace state space system identification for industrial processes. J. Process Control 10(2–3), 149–155 (2000)

    Article  Google Scholar 

  8. J.C. Gómez, E. Baeyens, Identification of block-oriented nonlinear systems using orthonormal bases. J. Process Control 14(6), 685–697 (2004)

    Article  Google Scholar 

  9. W. Greblicki, Nonparametric approach to Wiener system identification. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(6), 538–545 (1997)

    Article  MathSciNet  Google Scholar 

  10. Y. Gu, X. Lu, R. Ding, Parameter and state estimation algorithm for a state space model with a one-unit state delay. Circuits Syst. Signal Process. 32(5), 2267–2280 (2013)

    Article  MathSciNet  Google Scholar 

  11. J. Guo, L.Y. Wang, G. Yin, Y.L. Zhao, J.F. Zhang, Identification of Wiener systems with quantized inputs and binary-valued output observations. Automatica 78, 280–286 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Li, C. Wen, W.X. Zheng, Y. Chen, Identification of a class of nonlinear autoregressive models with exogenous inputs based on kernel machines. IEEE Trans. Signal Process. 59(5), 2146–2159 (2011)

    Article  MathSciNet  Google Scholar 

  13. J.H. Li, F. Ding, G.W. Yang, Maximum likelihood least squares identification method for input nonlinear finite impulse response moving average systems. Math. Comput. Model. 55(3–4), 442–450 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. J.H. Li, F. Ding, L. Hua, Maximum likelihood Newton recursive and the Newton iterative estimation algorithms for Hammerstein CARAR systems. Nonlinear Dyn. 75(1–2), 235–245 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. J.H. Li, W.X. Zheng, J.P. Gu, L. Hua, Parameter estimation algorithms for Hammerstein output error systems using Levenberg–Marquardt optimization method with varying interval measurements. J. Frankl. Inst. 354(1), 316–331 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Ljung, System Identification: Theory for the User, 2nd edn. (Prentice Hall, Englewood Cliffs, New Jersey, 1999)

    MATH  Google Scholar 

  17. M. Lovera, T. Gustafsson, M. Verhaegen, Recursive subspace identification of linear and non-linear Wiener state-space models. Automatica 36(11), 1639–1650 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Mercère, L. Bako, Parameterization and identification of multivariable state-space systems: a canonical approach. Automatica 47(8), 1547–1555 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Mzyk, P. Wachel, Kernel-based identification of Wiener–Hammerstein system. Automatica 83, 275–281 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. R.D. Nowak, Nonlinear system identification. Circuits Syst. Signal Process. 21(1), 109–122 (2005)

    Article  MathSciNet  Google Scholar 

  21. S. Oblak, I. Škrjanc, Continuous-time Wiener-model predictive control of a pH process based on a PWL approximation. Chem. Eng. Sci. 65(5), 1720–1728 (2010)

    Article  Google Scholar 

  22. J. Pan, X. Jiang, X.K. Wan, W. Ding, A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems. Int. J. Control Autom. Syst. 15(3), 1189–1197 (2017)

    Article  Google Scholar 

  23. T.B. Schön, A. Wills, B. Ninness, System identification of nonlinear state-space models. Automatica 47(1), 39–49 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Shafiee, M.M. Arefi, M.R. Jahed-Motlagh, A.A. Jalali, Nonlinear predictive control of a polymerization reactor based on piecewise linear Wiener model. Chem. Eng. J. 143(1–3), 282–292 (2008)

    Article  Google Scholar 

  25. Y. Shi, J.H. Qin, H.S. Ahn, Distributed coordination control and industrial applications. IEEE Trans. Ind. Electron. 64(6), 4967–4971 (2017)

    Article  Google Scholar 

  26. J. Sjöberg, Q.H. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.-Y. Glorennec, H. Hjalmarsson, A. Juditsk, Nonlinear black-box modeling in system identification: a unified overview. Automatica 31(12), 1691–1724 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Söderström, U. Soverini, Errors-in-variables identification using maximum likelihood estimation in the frequency domain. Automatica 79, 131–143 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. K. Tiels, J. Schoukens, Wiener system identification with generalized orthonormal basis functions. Automatica 50(12), 3147–3154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. D.Q. Wang, Y.P. Gao, Recursive maximum likelihood identification method for a multivariable controlled autoregressive moving average system. IMA J. Math. Control Inf. 33(4), 1015–1031 (2016)

    Article  MathSciNet  Google Scholar 

  30. D.Q. Wang, Z. Zhang, J.Y. Yuan, Maximum likelihood estimation method for dual-rate Hammerstein systems. Int. J. Control Autom. Syst. 15(2), 698–705 (2017)

    Article  Google Scholar 

  31. X.H. Wang, F. Ding, Joint estimation of states and parameters for an input nonlinear state-space system with colored noise using the filtering technique. Circuits Syst. Signal Process. 35(2), 481–500 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. X.H. Wang, F. Ding, Convergence of the recursive identification algorithms for multivariate pseudo-linear regressive systems. Int. J. Adapt. Control Signal Process. 30(6), 824–842 (2016)

    Article  MathSciNet  Google Scholar 

  33. D. Westwick, M. Verhaegen, Identifying MIMO Wiener systems using subspace model identification methods. Signal Process. 52(2), 235–258 (1996)

    Article  MATH  Google Scholar 

  34. F. Yu, Z.Z. Mao, M.X. Jia, Recursive identification for Hammerstein–Wiener systems with dead-zone input nonlinearity. J. Process Control 23(8), 1108–1115 (2013)

    Article  Google Scholar 

  35. L. Xu, F. Ding, Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modeling. Circuits Syst. Signal Process. 36(4), 1735–1753 (2017)

    Article  MATH  Google Scholar 

  36. L. Xu, F. Ding, Y. Gu, A. Alsaedi, T. Hayat, A multi-innovation state and parameter estimation algorithm for a state space system with d-step state-delay. Signal Process. 140, 97–103 (2017)

    Article  Google Scholar 

  37. W.X. Zhao, H.F. Chen, W.X. Zheng, Recursive identification for nonlinear ARX systems based on stochastic approximation algorithm. IEEE Trans. Autom. Control 55(6), 1287–1299 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. W.X. Zhao, W.X. Zheng, E.-W. Bai, A recursive local linear estimator for identification of nonlinear ARX systems: Asymptotical convergence and applications. IEEE Trans. Autom. Control 58(12), 3054–3069 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (61403217, 61273024), the Jiangsu Province Postdoctoral Research Funding Plan (1601129B), the Jiangsu Government Scholarship for Overseas Studies, and the Australian Research Council (DP120104986).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xing Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zheng, W.X., Gu, J. et al. A Recursive Identification Algorithm for Wiener Nonlinear Systems with Linear State-Space Subsystem. Circuits Syst Signal Process 37, 2374–2393 (2018). https://doi.org/10.1007/s00034-017-0682-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0682-7

Keywords

Navigation