Skip to main content
Log in

Model and Control for a Class of Networked Evolutionary Games with Finite Memories and Time-Varying Networks

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper investigates the algebraic formulation and control for a class of networked evolutionary games with finite memories and time-varying networks by using the semi-tensor product method and presents a number of new results. Firstly, a kind of algebraic expressions is formulated for the given networked evolutionary games, and the dynamics of the given game is expressed as a finite homogenous Markov chain, based on which, the behaviors of the players in the corresponding evolutionary games are analyzed. Then, the control problem of the given games is studied. Under certain assumptions, the relationship between the strict Nash equilibriums and the fixed points of the given networked evolutionary games is revealed, and a free-type control sequence is designed to guarantee the Nash equilibrium reachable globally. Finally, an illustrative example is studied to support our new results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. C. Adami, A. Hintze, Evolutionary instability of zero-determinant strategies demonstrates that winning is not everything. Nat. Commun. 4, 2193 (2013)

    Article  Google Scholar 

  2. M. Bell, S. Perera, M. Piraveenan, M. Bliemer, T. Latty, C. Reid, Network growth models: a behavioural basis for attachment proportional to fitness. Sci. Rep. 7, 42431 (2017)

    Article  Google Scholar 

  3. D. Cheng, H. Qi, Z. Li, Analysis and Control of Boolean Networks: A Semi-tensor Product Approach (Springer, London, 2011)

    Book  MATH  Google Scholar 

  4. D. Cheng, F. He, H. Qi, T. Xu, Modeling, analysis and control of networked evolutionary games. IEEE Trans. Automat. Contr. 60(9), 2402–2415 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Cheng, On finite potential games. Automatica 50(7), 1793–1801 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Cheng, T. Xu, H. Qi, Evolutionarily stable strategy of networked evolutionary games. IEEE Trans. Neural Netw. Learn. Syst. 25(7), 1335–1345 (2014)

    Article  Google Scholar 

  7. D. Friedman, On economic applications of evolutionary game theory. J. Evol. Econ. 8(1), 15–43 (1998)

    Article  Google Scholar 

  8. S. Fu, Y. Wang, G. Zhao, A matrix approach to the analysis and control of networked evolutionary games with bankruptcy mechanism. Asian J. Control 19(2), 717–727 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Fudenberg, D.K. Levine, The Theory of Learning in Games (MIT Press, Cambridge, 1998)

    MATH  Google Scholar 

  10. R. Gibbons, A Primer in Game Theory (Harvester Wheatsheaf, New York, 1992)

    MATH  Google Scholar 

  11. P. Guo, Y. Wang, H. Li, Algebraic formulation and strategy optimization for a class of evolutionary network games via semi-tensor product method. Automatica 49(11), 3384–3389 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Guo, H. Zhang, F.E. Alsaadi, T. Hayat, Semi-tensor product method to a class of event-triggered control for finite evolutionary networked games. IET Control Theory Appl. 11(13), 2140–2145 (2017)

    Article  MathSciNet  Google Scholar 

  13. C. Jiang, Y. Chen, K.R. Liu, Graphical evolutionary game for information diffusion over social networks. IEEE J. Sel. Top. Signal Process. 8(4), 524–536 (2014)

    Article  Google Scholar 

  14. S. Kalpazidou, Cycloid decompositions of finite Markov chains. Circuits Syst. Signal Process. 18(3), 191–204 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Kasthurirathna, H. Nguyen, M. Piraveenan, S. Uddin, U. Senanayake, Optimisation of strategy placements for public good in complex networks, in Proceedings of the 2014 International Conference on Social Computing, (2014), pp. 1–8

  16. D. Kasthurirathna, M. Piraveenan, Emergence of scale-free characteristics in socio-ecological systems with bounded rationality. Sci. Rep. 5, 10448 (2015)

    Article  Google Scholar 

  17. J. Kemeny, J. Snell, Finite Markov Chains (van Nostrand, Princeton, 1960)

    MATH  Google Scholar 

  18. F. Li, J. Sun, Controllability of higher order Boolean control networks. Appl. Math. Comput. 219(1), 158–169 (2012)

    MathSciNet  MATH  Google Scholar 

  19. H. Li, Y. Wang, L. Xie, Output tracking control of Boolean control networks via state feedback: constant reference signal case. Automatica 59, 54–59 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Li, Y. Wang, Output tracking of switched Boolean networks under open-loop/closed-loop switching signals. Nonlinear Anal. Hybrid Syst. 22, 137–146 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Li, L. Xie, Y. Wang, On robust control invariance of Boolean control networks. Automatica 68, 392–396 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Li, Y. Wang, Controllability analysis and control design for switched Boolean networks with state and input constraints. SIAM J. Control Optim. 53(5), 2955–2979 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Li, L. Xie, Y. Wang, Output regulation of Boolean control networks. IEEE Trans. Automat. Contr. 62(6), 2993–2998 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Li, X. Ding, A. Alsaedi, F.E. Alsaadi, Stochastic set stabilisation of n-person random evolutionary Boolean games and its applications. IET Control Theory Appl. 11(13), 2152–2160 (2017)

    Article  MathSciNet  Google Scholar 

  25. H. Li, G. Zhao, M. Meng, J. Feng, A survey on applications of semi-tensor product method in engineering. Sci. China Inform. Sci. https://doi.org/10.1007/s11432-017-9238-1

  26. J. Lu, H. Li, Y. Liu, F. Li, Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems. IET Control Theory Appl. 11(13), 2040–2047 (2017)

    Article  MathSciNet  Google Scholar 

  27. R.D. Luce, H. Raiffa, Games and Decisions: Introduction and Critical Surveys (Wiley, New York, 1957)

    MATH  Google Scholar 

  28. M. Meng, B. Li, J. Feng, Controllability and observability of singular Boolean control networks. Circuits Syst. Signal Process. 34(4), 1233–1248 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Meng, J. Lam, J. Feng, X. Li, \(l_1\)-gain analysis and model reduction problem for Boolean control networks. Inform. Sci. 348, 68–83 (2016)

    Article  MathSciNet  Google Scholar 

  30. M. Nowak, K. Sigmund, Evolutionary dynamics of biological games. Science 303(5659), 793–799 (2004)

    Article  Google Scholar 

  31. M. Perc, A. Szolnoki, Coevolutionary games–a mini review. BioSystems 99(2), 109–125 (2010)

    Article  Google Scholar 

  32. M. Perc, J. Gomez-Gardenes, A. Szolnoki, L.M. Floria, Y. Moreno, Evolutionary dynamics of group interactions on structured populations: a review. J. R. Soc. Interface 10(80), 20120997 (2013)

    Article  Google Scholar 

  33. M. Perc, Phase transitions in models of human cooperation. Phys. Lett. A 380(36), 2803–2808 (2016)

    Article  Google Scholar 

  34. A. Szolnoki, M. Perc, Resolving social dilemmas on evolving random networks. Europhys. Lett. 86(3), 30007 (2009)

    Article  Google Scholar 

  35. A. Szolnoki, M. Perc, Z. Danku, Making new connections towards cooperation in the prisoner’s dilemma game. Europhys. Lett. 84(5), 50007 (2008)

    Article  Google Scholar 

  36. C. Taylor, D. Fudenberg, A. Sasaki, M. Nowak, Evolutionary game dynamics in finite populations. Bull. Math. Biol. 66(6), 1621–1644 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Z. Wang, L. Wang, A. Szolnoki, M. Perc, Evolutionary games on multilayer networks: a colloquium. Eur. Phys. J. B (2015). https://doi.org/10.1140/epjb/e2015-60270-7

  38. W. Wang, J. Ren, G. Chen, B. Wang, Memory-based snowdrift game on networks. Phys. Rev. E 74(5), 056113 (2006)

    Article  Google Scholar 

  39. C. Zhang, J. Zhang, G. Xie, L. Wang, M. Perc, Evolution of interactions and cooperation in the spatial prisoner’s dilemma game. PloS One 6(10), e26724 (2011)

    Article  Google Scholar 

  40. G. Zhao, S. Fu, Matrix approach to trajectory control of higher-order k-valued logical control networks. Control Theory Appl. 11(13), 2110–2115 (2017)

    Article  MathSciNet  Google Scholar 

  41. G. Zhao, Y. Wang, Formulation and optimization control of a class of networked evolutionary games with switched topologies. Nonlinear Anal. Hybrid Syst. 22, 98–107 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Y. Zhao, Z. Li, D. Cheng, Optimal control of logical control networks. IEEE Trans. Automat. Contr. 56(8), 1766–1776 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grants 61374065 and 61503225, the Natural Science Fund for Distinguished Young Scholars of Shandong Province under Grant JQ201613 and the Natural Science Foundation of Shandong Province under Grant ZR2015FQ003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, S., Zhao, G., Li, H. et al. Model and Control for a Class of Networked Evolutionary Games with Finite Memories and Time-Varying Networks. Circuits Syst Signal Process 37, 3093–3114 (2018). https://doi.org/10.1007/s00034-017-0707-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0707-2

Keywords

Navigation