Skip to main content
Log in

Block Matching Video Compression Based on Sparse Representation and Dictionary Learning

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This work presents a video compression method based on sparse representation and dictionary learning algorithms. The proposed scheme achieves superb rate-distortion performance and decent subjective quality, compared to modern standards, especially at low bit-rates. Different from similar works, sparse representation is employed here for both intra-frame and block matching inter-frame motion information. Dividing video frames to reference and current frames, motion vectors and motion compensation residuals of current frames are estimated in regard to reference frames. The sparse codes of reference frames and motion compensation residuals are obtained using learned dictionaries, entropy-coded, and stored or sent to the receiver along with the coded motion field. In the receiver, after decoding the sparse codes and motion vectors, the reference frames and residuals are reconstructed employing the same learned dictionary and the current frames are recovered using the reference frames and motion fields. In the proposed scheme, the Iterative Least Square Dictionary Learning Algorithm (ILS-DLA) and K-SVD dictionary building methods are employed in the DCT domain. The compression rate and quality of the method based on the two dictionary learning algorithms are compared to each other and to H.264/AVC and HEVC modern standards. The results based on PSNR and SSIM criteria show that the proposed approach presents superior performance respect to H.264/AVC and even HEVC for higher bit-rates of QCIF video format, and the K-SVD learning algorithm performs slightly better than the ILS-DLA for the purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. For sparse coding and dictionary learning, we have used the DICTIONARY LEARNING TOOLS available at http://www.ux.uis.no/~karlsk/dle/index.html.

References

  1. M. Aharon, M. Elad, A. Bruckstein, K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  MATH  Google Scholar 

  2. S. Becker, J. Bobin, E.J. Candes, NESTA: a fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4(1), 1–39 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Becker, E.J. Candes, M. Grant, Templates for convex cone problems with applications to sparse signal recovery. Math. Prog. Comp. 3(3), 165–218 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Blumensath, M. Davies, Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. O. Bryt, M. Elad, Compression of facial images using the K-SVD algorithm. J. Vis. Commun. Image R. 19(4), 270–283 (2008)

    Article  Google Scholar 

  6. E.J. Candes, M.B. Wakin, An introduction to compressive sampling. IEEE Signal. Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  7. E.J. Candes, M.B. Wakin, S. Boyd, Enhancing sparsity by reweighted 1 minimization. J. Fourier Anal. Appl. 14(5), 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. K.Y. Chang, C.F. Lin, C.S. Chen, Y.P. Hung, Single-pass K-SVD for efficient dictionary learning. Circuits. Syst. signal Process. 33(1), 309–320 (2014)

    Article  Google Scholar 

  9. R. Chartrand, Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal. Procss. Lett. 14, 707–710 (2007)

    Article  Google Scholar 

  10. S. Chen, S.A. Billings, W. Luo, Orthogonal least squares methods and their application to non-linear system identification. Int. J. Control. 50(5), 1873–1896 (1989)

    Article  MATH  Google Scholar 

  11. S.F. Cotter, B.D. Rao, K. Engan, K. Kreutz-Delgado, Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 53(7), 2477–2488 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. M.E. Davies, Y.C. Eldar, Rank awareness in joint sparse recovery. IEEE Trans. Inf. Theory. 58(2), 1135–1146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Donoho, Compressed sensing. IEEE Trans. Inf. Theory. 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. D.L. Donoho, A. Maliki, A. Montanari, Message-passing algorithms for compressed sensing. Proc. Natl. Acad. Sci. 106(45), 18914–18919 (2009)

    Article  Google Scholar 

  15. Y.C. Eldar, G. Kutyniok, Theory and Applications, Compressed sensing (Cambridge University Press, New York, 2012)

    Google Scholar 

  16. K. Engan, K. Skretting, J.H. Husy, Family of iterative LS-based dictionary learning algorithms, ILS-DLA, for sparse signal representation. Dig. Signal Process. 17(1), 32–49 (2007)

    Article  Google Scholar 

  17. M.A.T. Figueiredo, R.D. Nowak, S.J. Wright, Gradient projection for sparse reconstruction application to compressed sensing and other inverse problems. IEEE J. Sel. Topics Sig. Process. 1(4), 586–597 (2007)

    Article  Google Scholar 

  18. M. Hugel, H. Rauhut, T. Strohmer, Remote sensing via 1 minimization. Found. Comput. Math. 14(1), 115–150 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. J.R. Jain, A.K. Jain, Displacement measurement and its application to interframe image coding. IEEE Trans. Comm. 29(12), 1799–1808 (1981)

    Article  Google Scholar 

  20. X.X. Ji, G. Zhang, An adaptive SAR image compression method. Comp. Electr. Eng. 62(8), 473–484 (2017)

  21. W. Lin, K. Panusopone, D. Baylon, M.T. Sun, A computation control motion estimation method for complexity scalable video coding. IEEE Trans. Circuits Syst. Video Technol. 20(11), 1533–1543 (2010)

    Article  Google Scholar 

  22. W. Lin, K. Panusopone, D. Baylon, M.T. Sun, Z. Chen, H. Li, A fast sub-pixel motion estimation algorithm for H.264/AVC video coding. IEEE Trans. Circuits Syst. Video Technol. 21(2), 237–242 (2011)

    Article  Google Scholar 

  23. W. Lin, M.T. Sun, H. Li, Z. Chen, W. Li, B. Zhou, Macroblock classification for video applications involving motions. IEEE Trans. Broadcast. 58(1), 34–46 (2012)

    Article  Google Scholar 

  24. H. Mahdavi-Nasab, S. Kasaei, New half pixel accuracy motion estimation algorithms for low bitrate video communicatons. Scientia Iranica 15(6), 507–516 (2008)

    Google Scholar 

  25. D. Needell, J. Tropp, COSAMP: iterative signal recovery from incomplete and inaccurate samples. App. Comput. Harmon. Anal. 26, 301–321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Y.C. Pati, R. Rezaifar, P.S. Krishnaprasad, Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, in Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, (1993), pp. 40–44

  27. R. Rubinstein, A.M. Bruckstein, M. Elad, Dictionaries for sparse representation modeling. Proc. IEEE. 98(6), 1045–1057 (2010)

    Article  Google Scholar 

  28. K. Skretting, K. Engan, Image compression using learned dictionaries by RLS-DLA and compared with K-SVD, in Proceedings of the IEEE ICASSP, (2011), pp. 1517–1520

  29. P. Stoica, A. Nehorai, MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Trans. Acoust. Speech Sig. Proc. 37, 720–741 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  30. G.J. Sullivan, J. Ohm, W.J. Han, T. Wiegand, Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)

    Article  Google Scholar 

  31. Y. Sun, M. Xu, X. Tao, J. Lu, Online dictionary learning based intra-frame video coding. Wireless Pers. Commun. 74, 1281–1295 (2014)

    Article  Google Scholar 

  32. A.M. Taheri, H. Mahdavi-Nasab, Facial image compression using adaptive multiple dictionaries, in 9th Iranian Conference on Machine Vision and Image Processing, (2015), pp. 92–95

  33. K.S. Thyagarajan, Still image and video compression with MATLAB (Wiley, New Jersey, 2010)

    Book  Google Scholar 

  34. I. Tosic, P. Frossard, Dictionary learning. Signal Process. Mag. IEEE 28(2), 27–38 (2011)

    Article  MATH  Google Scholar 

  35. J.A. Tropp, Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. J.A. Tropp, S.J. Wright, Computational methods for sparse solution of linear inverse problems. Proc. IEEE. 98(6), 948–958 (2010)

    Article  Google Scholar 

  37. H.L. Van Trees, Detection, estimation and modulation theory. Optimum array processing (Wiley, New York, 2002)

    Google Scholar 

  38. Z. Wang, A. Bovik, H.R. Sheikh, E.P. Simoncelli, Image qualifty assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  39. T. Wiegand, G. Sullivan, G. Bjontegaard, A. Luthra, Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13, 560–576 (2003)

    Article  Google Scholar 

  40. D. Wipf, S. Nagarajan, Iterative reweighted 1 and 2 methods for finding sparse solutions. IEEE J. Sel. Topics Signal Process. 4(2), 317–329 (2010)

    Article  Google Scholar 

  41. H. Xiong, Z. Pan, X. Ye, C.W. Chen, Sparse spatio-temporal representation adaptive regularized dictionary learning for low bit-rate video coding. IEEE Trans. Circuits Syst. Video Technol. 23(4), 710–728 (2013)

    Article  Google Scholar 

  42. X. Zhan, R. Zhang, D. Yin, C. Huo, SAR image compression using multiscale dictionary learning and sparse representation. Remote Sens. Lett. 10(5), 1090–1094 (2013)

    Article  Google Scholar 

  43. J.Y. Zhu, Z.Y. Wang, R. Zhong, S.M. Qu, Dictionary based surveillance image compression. J. Vis. Commun. Image R. 31, 225–230 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homayoun Mahdavi-Nasab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irannejad, M., Mahdavi-Nasab, H. Block Matching Video Compression Based on Sparse Representation and Dictionary Learning. Circuits Syst Signal Process 37, 3537–3557 (2018). https://doi.org/10.1007/s00034-017-0720-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0720-5

Keywords

Navigation