Skip to main content
Log in

Robust Beamforming Based on Steering Vector and Covariance Matrix Estimation

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel robust design algorithm based on estimation of signal steering vector and covariance matrix is developed. The theoretical covariance matrix is first estimated via the shrinkage method. Subsequently, the desired signal steering vector is estimated based on maximizing array output power under the correlation coefficient constraint and norm constraint. The original nonconvex quadratic programming problem, whose relaxation is tight through analyzing the hidden convexity properties, can be solved by the relaxed semidefinite programming method. Moreover, the interference-plus-noise covariance matrix is estimated with the corrected steering vector and the subspace theorem, whose efficiency is analytically proven. Numerical experiments show that the proposed algorithm has the advantages of high efficiency and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In this work, we assume that the interference is neither close to nor in the mainlobe beam region of the array [19].

  2. Here, we consider a general homogenized form for the optimization problem \({\mathcal {P}1}\) with an extra variable s. A similar procedure was employed in [1, 13].

  3. Functions \({\mathcal{D}_1}\) and \({\mathcal{D}_2}\) are used to schematize the mapping (formally defined and proved in [1, Theorem 2.3]) between \({\mathbf{A}}^\# \) and a rank-one matrix \({{{\tilde{\mathbf{a}}}}^{\# }} \left( {{{\tilde{\mathbf{a}}}}^{\# }} \right) ^{H}\) for cases where \({\mathrm{rank}}\left( {\mathbf{A}}^\# \right) \ge 3\) and \({\mathrm{rank}}\left( {\mathbf{A}}^\# \right) = 2\), respectively. The MATLAB implementation is provided in http://www1.se.cuhk.edu.hk/~ywhuang/dcmp/paper.html.

References

  1. W. Ai, Y. Huang, S. Zhang, New results on hermitian matrix rank-one decomposition. Math. Program. 128(1), 253–283 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Aubry, A. De Maio, Y. Huang, M. Piezzo, Robust design of radar doppler filters. IEEE Trans. Signal Process. 64(22), 5848–5860 (2016)

    Article  MathSciNet  Google Scholar 

  3. A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications (MPS-SIAM Series on Optimiz, Philadelphia, 2001)

    Book  MATH  Google Scholar 

  4. M.Z.A. Bhotto, M.O. Ahmad, M.N.S. Swamy, Robust shrinkage affine-projection sign adaptive-filtering algorithms for impulsive noise environments. IEEE Trans. Signal Process. 62(13), 3349–3359 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  6. B.D. Carlson, Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst. 24(4), 397–401 (1988)

    Article  Google Scholar 

  7. L. Du, J. Li, P. Stoica, Fully automatic computation of diagonal loading levels for robust adaptive beamforming. IEEE Trans. Aerosp. Electron. Syst. 46(1), 1 (2010)

    Article  Google Scholar 

  8. D.D. Feldman, L.J. Griffiths, A projection approach for robust adaptive beamforming. IEEE Trans. Signal Process. 42(4), 867–876 (1994)

    Article  Google Scholar 

  9. M. Grant, S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, Version 2.1, March 2014 [Online]. http://cvxr.com/cvx

  10. Y. Gu, A. Leshem, Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation. IEEE Trans. Signal Process. 60(7), 3881–3885 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Y. Gu, A. Goodman, S. Hong, Y. Li, Robust adaptive beamforming based on interference covariance matrix sparse reconstruction. Signal Process. 96(5), 375–381 (2014)

    Article  Google Scholar 

  12. S.S. Haykin, Adaptive Filter Theory (Pearson Education, Chennai, 2008)

    MATH  Google Scholar 

  13. Y. Huang, D.P. Palomar, Rank-constrained separable semidefinite programming with applications to optimal beamforming. IEEE Trans. Signal Process. 58(2), 664–678 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Huang, J. Zhang, X. Xu, Z. Ye, Robust adaptive beamforming with a novel interference-plus-noise covariance matrix reconstruction method. IEEE Trans. Signal Process. 63(7), 1643–1650 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Huang, Y. Zhang, N. Li, L. Zhao, Design of sigma-point kalman filter with recursive updated measurement. Circuits Syst. Signal Process. 35(5), 1767–1782 (2016)

    Article  MATH  Google Scholar 

  16. F. Khateb, D. Biolek, Bulk-driven current differencing transconductance amplifier. Circuits Syst. Signal Process. 30(5), 1071–1089 (2011)

    Article  Google Scholar 

  17. J. Li, P. Stoica, Robust Adaptive Beamforming, vol. 88 (Wiley, New York, 2005)

    Book  Google Scholar 

  18. Z.Q. Luo, W.K. Ma, A.M.C. So, Y. Ye, S. Zhang, Nonconvex quadratic optimization, semidefinite relaxation, and applications. IEEE Signal Process. Mag. (Special Issue on Convex Optimization for Signal Processing) (2010)

  19. J. Qian, Z. He, Mainlobe interference suppression with eigenprojection algorithm and similarity constraints. Electron. Lett. 52(3), 228–230 (2016)

    Article  Google Scholar 

  20. J. Qian, Z. He, J. Xie, Y. Zhang, Null broadening adaptive beamforming based on covariance matrix reconstruction and similarity constraint. EURASIP J. Adv. Signal Process. 2017(1), 1 (2017)

    Article  Google Scholar 

  21. J. Qian, Z. He, W. Zhang, Y. Huang, N. Fu, J. Chambers, Robust adaptive beamforming for multiple-input multiple-output radar with spatial filtering techniques. Signal Process. 143, 152–160 (2018)

    Article  Google Scholar 

  22. H. Ruan, R.C. de Lamare, Robust adaptive beamforming using a low-complexity shrinkage- based mismatch estimation algorithm. IEEE Signal Process. Lett. 21(1), 60–64 (2014)

    Article  Google Scholar 

  23. Z. Shi, C. Zhou, Y. Gu, N.A. Goodman, F. Qu, Source estimation using coprime array: a sparse reconstruction perspective. IEEE Sens. J. 17(3), 755–765 (2017)

    Article  Google Scholar 

  24. W.L. Stutzman, G.A. Thiele, Antenna Theory and Design (Wiley, New York, 2012)

    Google Scholar 

  25. S.A. Vorobyov, A.B. Gershman, Z.Q. Luo, Robust adaptive beamforming using worst- case performance optimization: a solution to the signal mismatch problem. IEEE Trans. Signal Process. 51(2), 313–324 (2003)

    Article  Google Scholar 

  26. L. Xu, C. Zeng, G.S. Liao, J. Li, Doa and source number estimation method for strong and weak signals based on eigen beamforming. Dianzi Yu Xinxi Xuebao (J. Electron. Inf. Technol.) 33(2), 321–325 (2011)

    Google Scholar 

  27. D. Xu, R. He, F. Shen, Robust beamforming with magnitude response constraints and conjugate symmetric constraint. IEEE Commun. Lett. 17(3), 561–564 (2013)

    Article  Google Scholar 

  28. C. Zhou, J. Zhou, Direction-of-arrival estimation with coarray ESPRIT for coprime array. Sensors 17(8), 1779 (2017)

    Article  Google Scholar 

  29. C. Zhou, Y. Gu, S. He, A robust and efficient algorithm for coprime array adaptive beamforming. IEEE Trans. Veh. Technol. 99, 1–1 (2017)

    Google Scholar 

  30. C. Zhou, Z. Shi, Y. Gu, Coprime array adaptive beamforming with enhanced degrees-of-freedom capability. in IEEE Radar Conference, Seattle, WA, pp. 1357–1361 (2017)

  31. C. Zhou, Y. Gu, Y.D. Zhang, Z. Shi, T. Jin, X. Wu, Compressive sensing-based coprime array direction-of-arrival estimation. IET Commun. 11(11), 1719–1724 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhui Qian.

Additional information

This work was supported by the National Natural Science Foundation of China under Grants 61671139 and 61671137, and in part by China Scholarship Council (CSC) under Grant 201606070009.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, J., He, Z., Liu, T. et al. Robust Beamforming Based on Steering Vector and Covariance Matrix Estimation. Circuits Syst Signal Process 37, 4665–4682 (2018). https://doi.org/10.1007/s00034-018-0766-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0766-z

Keywords

Navigation