Skip to main content
Log in

State Estimation of Chaotic Lurie Systems via Communication Channel with Transmission Delay

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, the problem of state estimation for nonlinear Lurie systems is studied subject to only the measurable system outputs. We design the state observer, whose input signals are transmitted via the communication channel for state estimation of Lurie systems. The communication channel with a 2N-level logarithmic quantizer is described, and the transmission delay of communication channel is taken into account. A theoretical analysis of the state estimation is based on the Lyapunov–Krasovakii method, and a sufficient condition of globally asymptotically stable in terms of linear matrix inequality is obtained. The effectiveness of proposed logarithmic quantizer and the practicability of communication channel with transmission delay are validated by an illustrative example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.R. Andrievsky, A.L. Fradkov, Passification method in the problems of synchronization and state estimation of nonlinear systems over the digital communication channel. Upr. Bol’shimi Sist. 35, 20–58 (2011)

    Google Scholar 

  2. B.R. Andrievsky, A.L. Fradkov, State estimation of complex oscillatory system with uniform quantization under data rate constraints. in IEEE International Conference on Control Applications (CCA), pp. 865–870 (2012)

  3. B.R. Andrievsky, Synchronization and state estimation of nonlinear physical systems under communication constraints. in IEEE Conference on Norbert Wiener in the 21st Century (21CW), pp. 1–6 (2016)

  4. R.W. Brockett, D. Liberzon, Quantized feedback stabilization of linear systems. IEEE Trans. Autom. Control 45(7), 1279–1289 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Cao, H. Li, D.W. Ho, Synchronization criteria of Lur’e systems with time-delay feedback control. Chaos Solitons Fractals 23(4), 1285–1298 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Cao, R. Sivasamy, R. Rakkiyappan, Sampled-Data \(H_{\infty }\) Synchronization of chaotic Lur’e systems with time delay. Circuits Syst. Signal Process. 35(3), 811–835 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. W.H. Chen, X. Lu, F. Chen, Impulsive synchronization of chaotic Lur’e systems via partial states. Phys. Lett. A 372(23), 4210–4216 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. X. Chen, J.H. Park, J. Cao, J. Qiu, Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances. Appl. Math. Comput. 308, 161–173 (2017)

    MathSciNet  Google Scholar 

  9. X. Chen, J.H. Park, J. Cao, J. Qiu, Adaptive synchronization of multiple uncertain coupled chaotic systems via sliding mode control. Neurocomputing 273, 9–21 (2018)

    Article  Google Scholar 

  10. B. Cui, X. Lou, Synchronization of chaotic recurrent neural networks with time-varying delays using nonlinear feedback control. Chaos Solitons Fractals 39(1), 288–294 (2009)

    Article  MATH  Google Scholar 

  11. W.X. Cui, J.A. Fang, W.B. Zhang, Stabilizing and synchronizing the Markovian jumping neural networks with mode-dependent mixed delays based on quantized state feedback. J. Frankl. Inst. 350(2), 275–299 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. W.Y. Duan, C. Cai, Y. Zou, Synchronization for Lurie type complex dynamical networks with time-varying delay based on linear feedback controller. in 10th World Congress on Intelligent Control and Automation (WCICA), pp. 1389–1394 (2012)

  13. A.L. Fradkov, B.R. Andrievsky, R.J. Evans, Chaotic observer-based synchronization under information constraints. Phys. Rev. E 73(6), 066209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. A.L. Fradkov, B.R. Andrievsky, State estimation of passifiable Lurie systems via limited-capacity communication channel. in 35th Annual Conference of IEEE Industrial Electronics, IECON’09. pp. 3039–3044 (2009)

  15. A.L. Fradkov, B.R. Andrievsky, R.J. Evans, Synchronization of passifiable Lurie systems via limited-capacity communication channel. IEEE Trans. Circuits Syst. I Regul. Pap. 56(2), 430–439 (2009)

    Article  MathSciNet  Google Scholar 

  16. A.L. Fradkov, B.R. Andrievsky, M. Ananyevskiy, State estimation and synchronization of pendula systems over digital communication channels. Eur. Phys. J. Spec. Top. 223(4), 773–793 (2014)

    Article  Google Scholar 

  17. A.L. Fradkov, B.R. Andrievsky, M.S. Ananyevskiy, Passification based synchronization of nonlinear systems under communication constraints and bounded disturbances. Automatica 55, 287–293 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Fu, Quantization for feedback control and estimation. in 27th Chinese Control Conference, 2008. CCC, pp. 751–756 (2008)

  19. M. Fu, L. Xie, Finite-level quantized feedback control for linear systems. IEEE Trans. Autom. Control 54(5), 1165–1170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Fu, C.E. de Souza, State estimation for linear discrete-time systems using quantized measurements. Automatica 45(12), 2937–2945 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Q. Gao, J. Du, X. Liu, An improved absolute stability criterion for time-delay Lur’e systems and its frequency domain interpretation. Circuits Syst. Signal Process. 36(3), 916–930 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. H.L. He, J.J. Tu, P. Xiong, Chaos synchronization between Lurie systems based on estimation of Lipschitz constant. Syst. Eng. Electron. 33(3), 600–602 (2011)

    MATH  Google Scholar 

  23. T.H. Lee, J.H. Park, Improved criteria for sampled-data synchronization of chaotic Lur’e systems using two new approaches. Nonlinear Anal. Hybrid Syst. 24, 132–145 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Li, G. Zhang, S. Fei, S. Zhang, Further criteria on master-slave synchronization in chaotic Lur’e systems using delay feedback control. Circuits Syst. Signal Process. 35(8), 2992–3014 (2016)

    Article  MATH  Google Scholar 

  25. Y. Liu, S.M. Lee, Sampled-data synchronization of chaotic Lur’e systems with stochastic sampling. Circuits Syst. Signal Process. 34(12), 3725–3739 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Liu, S. Zhao, B. Niu, J. Li, H. Li, Stability analysis of a nonlinear electromechanical coupling transmission system with time delay feedback. Nonlinear Dyn. 86(3), 1863–1874 (2016)

    Article  MATH  Google Scholar 

  27. X. Lou, B. Cui, Robust asymptotic stability of uncertain fuzzy BAM neural networks with time-varying delays. Fuzzy Sets Syst. 158(24), 2746–2756 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. J.G. Lu, D.J. Hill, Impulsive synchronization of chaotic Lur’e systems by linear static measurement feedback: an LMI approach. IEEE Trans. Circuits Syst. II Exp. Br. 54(8), 710–714 (2007)

    Article  Google Scholar 

  29. X.C. Shang-Guan, Y. He, W.J. Lin, M. Wu, Improved synchronization of chaotic Lur’e systems with time delay using sampled-data control. J. Frankl. Inst. 354(3), 1618–1636 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. K. Shi, Y. Tang, X. Liu, S. Zhong, Non-fragile sampled-data robust synchronization of uncertain delayed chaotic Lurie systems with randomly occurring controller gain fluctuation. ISA Trans. 66, 185–199 (2017)

    Article  Google Scholar 

  31. K. Shi, Y. Tang, X. Liu, S. Zhong, Secondary delay-partition approach on robust performance analysis for uncertain time-varying Lurie nonlinear control system. Optim. Control Appl. Methods 38, 1208–1226 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. S.J.S. Theesar, P. Balasubramaniam, Secure communication via synchronization of Lure systems using sampled-data controller. Circuits Syst. Signal Process. 33(1), 37–52 (2014)

    Article  Google Scholar 

  33. W. Wang, B. Xu, Criteria for chaos synchronization of a class of Lurie systems. in 7th World Congress on Intelligent Control and Automation, 2008. WCICA 2008, pp. 4600–4603 (2008)

  34. Y. Wang, Y. Zhu, H.R. Karimi, X. Li, Sampled-data exponential synchronization of chaotic Lur’e systems. IEEE Access 5, 17834–17840 (2017)

    Article  Google Scholar 

  35. Y.Q. Wu, H. Su, Z.G. Wu, Asymptotical synchronization of chaotic Lur’e systems under time-varying sampling. Circuits Syst. Signal Process. 33(3), 699–712 (2014)

    Article  Google Scholar 

  36. J. Xiang, Y. Li, W. Wei, An improved condition for masterCslave synchronization of Lur’e systems with time delay. Phys. Lett. A 362(2), 154–158 (2007)

    Article  Google Scholar 

  37. B. Xu, X. Liu, X. Liao, Absolute stability of Lurie systems with impulsive effects. Comput. Math. Appl. 47(2–3), 419–425 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. H.L. Xu, Impulsive control approach for robust stabilization of chaotic Lurie system. Tech. Autom. Appl. 9, 000 (2007)

    Google Scholar 

  39. K. You, W. Su, M. Fu, L. Xie, Attainability of the minimum data rate for stabilization of linear systems via logarithmic quantization. Automatica 47(1), 170–176 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. H.B. Zeng, Y. He, M. Wu, S.P. Xiao, Absolute stability and stabilization for Lurie networked control systems. Int. J. Robust Nonlinear Control 21(14), 1667–1676 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. X. Zhang, B. Cui, Synchronization of Lurie system based on contraction analysis. Appl. Math. Comput. 223, 180–190 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Y. Zhang, D. Zhao, H. Zhao, Y. Chen, N. Kang, Optimization of a MIMO amplify-and-forward relay system with channel state information estimation error and feedback delay. EURASIP J. Adv. Signal Process. 2016(1), 117 (2016)

    Article  Google Scholar 

  43. R. Zhang, D. Zeng, S. Zhong, Novel master-slave synchronization criteria of chaotic Lur’e systems with time delays using sampled-data control. J. Frankl. Inst. 354, 4930–4954 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanhui Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Cui, B. State Estimation of Chaotic Lurie Systems via Communication Channel with Transmission Delay. Circuits Syst Signal Process 37, 4568–4583 (2018). https://doi.org/10.1007/s00034-018-0779-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0779-7

Keywords

Navigation