Skip to main content
Log in

Finite-Time Stability and Control of 2D Continuous–Discrete Systems in Roesser Model

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This study is conducted to investigate stability and control problems within a finite-time interval for a 2D continuous–discrete system in Roesser model. The concepts of finite-time stability (FTS) and finite-time boundedness (FTB) are naturally extended to the 2D continuous–discrete system. Recursive relations between system states are first obtained, then sufficient conditions for FTS and FTB in the system are derived, and a finite-time controller is supplied to the system. Sufficient conditions for finite-time stabilization are also provided for the linear repetitive process. Examples of metal rolling operation are presented to illustrate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Amato, M. Ariola, C. Cosentino, Finite-time control of discrete-time linear systems: analysis and design conditions. Automatica 46(5), 919–924 (2010)

    Article  MathSciNet  Google Scholar 

  2. F. Amato, M. Ariola, P. Dorato, Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica 37, 1459–1463 (2001)

    Article  Google Scholar 

  3. J. Bai, R. Lu, A. Xue, Q. She, Z. Shi, Finite-time stability analysis of discrete-time fuzzy Hopfield neural network. Neurocomputing 159(2), 263–267 (2015)

    Article  Google Scholar 

  4. M. Buslowicz, Robust stability of the new general 2D model of a class of continuous–discrete linear systems. Bull. Polish Acad. Sci. Tech. Sci. 58(4), 561–565 (2010)

    MATH  Google Scholar 

  5. M. Buslowicz, Stability and robust stability conditions for a general model of scalar continuous–discrete linear systems. Pomiary, Automatyka, Kontrola 56, 133–135 (2010)

    Google Scholar 

  6. M. Buslowicz, A. Ruszewski, Computer methods for stability analysis of the Roesser type model of 2D continuous–discrete linear systems. Int. J. Appl. Math. Comput. Sci. 22(2), 401–408 (2012)

    Article  MathSciNet  Google Scholar 

  7. Y. Chen, Q. Liu, R. Lu et al., Finite-time control of switched stochastic delayed systems. Neurocomputing 191, 374 (2016)

    Article  Google Scholar 

  8. P. Dabkowski, K. Galkowski, E. Rogers, Strong practical stability and stabilization of differential linear repetitive processes. Syst. Control Lett. 59(10), 639–644 (2010)

    Article  MathSciNet  Google Scholar 

  9. R. Dandrea, G.E. Dullerud, Distributed control design for spatially interconnected systems. IEEE Trans. Autom. Control 48(9), 1478–1495 (2003)

    Article  MathSciNet  Google Scholar 

  10. P. Dorato, C. Abdallah, D. Famularo, Robust finite-time stability design via linear matrix inequalities, in IEEE Conference on Decision and Control. Institute of Electrical Engineers INC (IEE). (1997)

  11. K. Galkowski, J. Wood, Multidimensional Signals, Circuits and Systems, Systems and Control Book Series (Taylor and Francis, London, England, 2001)

    Google Scholar 

  12. G. Garcia, S. Tarbouriech, J. Bemussou, Finite-time stabilization of linear time-varying continuous systems. IEEE Trans. Autom. Control 54(2), 364–369 (2009)

    Article  MathSciNet  Google Scholar 

  13. S. He, F. Liu, On robust controllability with respect to the finite-time interval of uncertain nonlinear jump systems. Trans. Inst. Meas. Control 34(7), 841–849 (2012)

    Article  Google Scholar 

  14. S. He, F. Liu, Optimal finite-time passive controller design for uncertain nonlinear Markovian jumping systems. J. Frankl. Inst. Eng. Appl. Math. 351(7), 3782–3796 (2014)

    Article  MathSciNet  Google Scholar 

  15. T. Kaczorek, Positive fractional 2D continuous–discrete linear systems. Bull. Polish Acad. Sci. Tech. Sci. 59(4), 575–579 (2011)

    MATH  Google Scholar 

  16. T. Kaczorek, Stability of continuous–discrete linear systems described by the general model. Bull. Polish Acad. Sci. Tech. Sci. 59(2), 189–193 (2011)

    MATH  Google Scholar 

  17. G. Kamenkov, On stability of motion over a finite interval of time. J. Appl. Math. Mech. (PMM) 17, 529–540 (1953)

    MathSciNet  Google Scholar 

  18. S. Knorn, A two-dimensional systems stability analysis of vehicle platoons (National University, Maynooth, 2013)

    Google Scholar 

  19. M.P. Lazarević, A.M. Spasić, Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach. Math. Comput. Model. 49(3), 475–481 (2009)

    Article  MathSciNet  Google Scholar 

  20. A. Lebedev, The problem of stability in a finite interval of time. J. Appl. Math. Mech. (PMM) 18, 75–94 (1954)

    Google Scholar 

  21. Y. Li, M. Cantoni, E. Weyer, On water-level error propagation in controlled irrigation channels, in Proceedings of IEEE Conference on Decision Control and European Control Conference, (Seville, Spain, 2005), pp. 2101–2106

  22. Y. Ma, B. Wu, Y.E. Wang, Finite-time stability and finite-time boundedness of fractional order linear systems. Neurocomputing. 173, 2076–2082 (2016)

    Article  Google Scholar 

  23. A. Maidi, M. Diaf, J. Corriou, Optimal linear PI fuzzy controller design of a heat exchanger. Chem. Eng. Process. 47(5), 938–945 (2008)

    Article  Google Scholar 

  24. E. Moulay, W. Perruquetti, Finite time stability and stabilization of a class of continuous systems. J. Math. Anal. Appl. 323(2), 1430–1443 (2006)

    Article  MathSciNet  Google Scholar 

  25. D.H. Owens, E. Rogers, Stability analysis for a class of 2D continuous–discrete linear systems with dynamic boundary conditions. Syst. Control Lett. 37(1), 55–60 (1999)

    Article  MathSciNet  Google Scholar 

  26. W. Paszke, O. Bachelier, New robust stability and stabilization conditions for linear repetitive processes, in International Workshop on Multidimensional, (IEEE, 2009), pp. 1–6

  27. W. Paszke, P. Dabkowski, E. Rogers, K. Galkowski, Stability and robustness of discrete linear repetitive processes in the finite frequency domain using the KYP lemma, in IEEE 52nd Annual Conference on Decision and Control (CDC), 2013, pp. 3421–3426 (2013)

  28. W. Paszke, E. Rogers, K. Galkowski, Z. Cai, Robust finite frequency range iterative learning control and experimental verification. Control Eng. Pract. 21(10), 1310–1320 (2013)

    Article  Google Scholar 

  29. R.P. Roesser, A discrete state-space model for linear image processing. IEEE Trans. Autom. Control 20(1), 1–10 (1975)

    Article  MathSciNet  Google Scholar 

  30. E. Rogers, K. Galkowski, D.H. Owens, Control Systems Theory and Applications for Linear Repetitive Processes (Springer, Berlin Heidelberg, 2007)

    MATH  Google Scholar 

  31. S.B. Stojanović, D.L. Debeljković, N. Dimitrijević, Finite-time stability of discrete-time systems with time-varying delay. Chem. Ind. Chem. Eng. Q./CICEQ 18(4), 525–533 (2012)

    Article  Google Scholar 

  32. T. Tan, B. Zhou, G.R. Duan, Finite-time stabilization of linear time-varying systems by piecewise constant feedback. Automatica 68, 277–285 (2016)

    Article  MathSciNet  Google Scholar 

  33. L. Wang, W. Wang, J. Gao, Stability and robust stabilization of 2D continuous–discrete systems in Roesser model based on KYP lemma. Multidim. Syst. Sign. Process. 28(1), 1–14 (2017)

    Article  Google Scholar 

  34. L. Wu, H. Gao, C. Wang, Quasi sliding mode control of differential linear repetitive processes with unknown input disturbance. IEEE Trans. Ind. Electron. 58(7), 3059–3068 (2011)

    Article  Google Scholar 

  35. R. Wu, Y. Lu, L. Chen, Finite-time stability of fractional delayed neural networks. Neurocomputing 149, 700–707 (2015)

    Article  Google Scholar 

  36. L. Wu, P. Shi, H. Gao, H∞ filtering for 2D Markovian jump systems. Automatica 44(7), 1849–1858 (2008)

    Article  MathSciNet  Google Scholar 

  37. L. Wu, R. Yang, P. Shi, Stability analysis and stabilization of 2D switched systems under arbitrary and restricted switching. Automatica 59, 206–215 (2015)

    Article  MathSciNet  Google Scholar 

  38. W. Zhang, X. An, Finite-time control of linear stochastic systems. Int. J. Innov. Comput. Inf. Control 4(3), 689–696 (2008)

    Google Scholar 

  39. G. Zhang, H.L. Trentelman, W. Wang, Input-output finite-region stability and stabilization for discrete 2D Fornasini–Marchesini models. Syst. Control Lett. 99, 9–16 (2017)

    Article  Google Scholar 

  40. G. Zhang, W. Wang, Finite-region stability and boundedness for discrete 2D Fornasini–Marchesini second models. Int. J. Syst. Sci. 48(4), 778–787 (2017)

    Article  MathSciNet  Google Scholar 

  41. G. Zhang, W. Wang, Finite-region stability and finite-region boundedness for 2D Roesser models. Math. Methods Appl. Sci. 39(18), 5757–5769 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China under Grant 61573007 and Specialized Research Fund for the Doctoral Program of Higher Education under Grant 20133219110040 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Wang, W. & Zhang, G. Finite-Time Stability and Control of 2D Continuous–Discrete Systems in Roesser Model. Circuits Syst Signal Process 37, 4789–4809 (2018). https://doi.org/10.1007/s00034-018-0813-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0813-9

Keywords

Navigation