Skip to main content
Log in

Effect of Different Approximation Techniques on Fractional-Order KHN Filter Design

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Having an approximate realization of the fractance device is an essential part of fractional-order filter design and implementation. This encouraged researchers to introduce many approximation techniques of fractional-order elements. In this paper, the fractional-order KHN low-pass and high-pass filters are investigated based on four different approximation techniques: Continued Fraction Expansion, Matsuda, Oustaloup, and Valsa. Fractional-order filter fundamentals are reviewed then a comparison is made between the ideal and actual characteristic of the filter realized with each approximation. Moreover, stability analysis and pole movement of the filter with respect to the transfer function parameters using the exact and approximated realizations are also investigated. Different MATLAB numerical simulations, as well as SPICE circuit results, have been introduced to validate the theoretical discussions. Also, to discuss the sensitivity of the responses to component tolerances, Monte Carlo simulations are carried out and the worst cases are summarized which show good immunity to component deviations. Finally, the KHN filter is tested experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. A.M. AbdelAty, A.G. Radwan, A.S. Elwakil, C. Psychalinos, Transient and steady-state response of a fractional-order dynamic PV model under different loads. J. Circuits Syst. Comput. 27(02), 1850023 (2018)

    Article  Google Scholar 

  2. A.M. AbdelAty, A. Soltan, W.A. Ahmed, A.G. Radwan, On the analysis and design of fractional-order chebyshev complex filter. Circuits Syst. Signal Process. 37(3), 915–938 (2018)

    Article  MathSciNet  Google Scholar 

  3. A .S. Ali, A .G. Radwan, A .M. Soliman, Fractional order butterworth filter: active and passive realizations. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 346–354 (2013)

    Article  Google Scholar 

  4. P. Bertsias, C. Psychalinos, A.G. Radwan, A.S. Elwakil, High-frequency capacitorless fractional-order CPE and FI emulator. Circuits Syst. Signal Process. (2017). https://doi.org/10.1007/s00034-017-0697-0

    Article  MathSciNet  Google Scholar 

  5. K. Biswas, G. Bohannan, R. Caponetto, A.M. Lopes, J.A.T. Machado, Fractional-order models of vegetable tissues, in Fractional-Order Devices, ed. by L. Fortuna, G. Chen (Springer, Berlin, 2017), pp. 73–92

    Chapter  Google Scholar 

  6. A. Boulkroune, A. Bouzeriba, T. Bouden, A.T. Azar, Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems, in Advances in Chaos Theory and Intelligent Control (Springer, Berlin, 2016), pp. 681–697

    Chapter  Google Scholar 

  7. R. Caponetto, F. Sapuppo, V. Tomasello, G. Maione, P. Lino, Fractional-order identification and control of heating processes with non-continuous materials. Entropy 18(11), 398 (2016)

    Article  Google Scholar 

  8. R. Caponetto, V. Tomasello, P. Lino, G. Maione, Design and efficient implementation of digital non-integer order controllers for electro-mechanical systems. J. Vib. Control 22(9), 2196–2210 (2016)

    Article  Google Scholar 

  9. G. Carlson, C. Halijak, Approximation of fractional capacitors (1/s) \({\hat{}}\) (1/n) by a regular newton process. IEEE Trans. Circuit Theory 11(2), 210–213 (1964)

    Article  Google Scholar 

  10. A. Cuyt, V.B. Petersen, B. Verdonk, H. Waadeland, W.B. Jones, Handbook of Continued Fractions for Special Functions, vol. 53 (Springer, Dordrecht, 2008)

    MATH  Google Scholar 

  11. M.-F. Danca, M. Fečkan, G. Chen, Impulsive stabilization of chaos in fractional-order systems. Nonlinear Dyn. 89(3), 1889–1903 (2017)

    Article  MathSciNet  Google Scholar 

  12. P. Duffett-Smith, Synthesis of lumped element, distributed, and planar filters. J. Atmos. Terr. Phys. 52(9), 811–812 (1990)

    Article  Google Scholar 

  13. A.M. Elshurafa, M.N. Almadhoun, K. Salama, H. Alshareef, Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites. Appl. Phys. Lett. 102(23), 232901 (2013)

    Article  Google Scholar 

  14. A.S. Elwakil, Fractional-order circuits and systems: an emerging interdisciplinary research area. IEEE Circuits Syst. Mag. 10(4), 40–50 (2010)

    Article  Google Scholar 

  15. T.J. Freeborn, A.S. Elwakil, B. Maundy, Approximated fractional-order inverse Chebyshev lowpass filters. Circuits Syst. Signal Process. 35(6), 1973–1982 (2015)

    Article  MathSciNet  Google Scholar 

  16. T.J. Freeborn, B. Maundy, A. Elwakil, Fractional-step Tow-Thomas biquad filters. IEICE Nonlinear Theory Appl. 3(3), 357–374 (2012)

    Article  Google Scholar 

  17. S.M. Ismail, L.A. Said, A.G. Radwan, A.H. Madian, M.F. Abu-ElYazeed, A.M. Soliman, Generalized fractional logistic map suitable for data encryption, in 2015 International Conference on Science and Technology (TICST) (IEEE, 2015), pp. 336–341

  18. A .A. Kilbas, H .M. Srivastava, J .J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, New York, 2006)

    MATH  Google Scholar 

  19. B. Krishna, Studies on fractional order differentiators and integrators: a survey. Signal Process. 91(3), 386–426 (2011)

    Article  Google Scholar 

  20. G. Maione, Thiele’s continued fractions in digital implementation of noninteger differintegrators. Signal Image Video Process. 6(3), 401–410 (2012)

    Article  Google Scholar 

  21. K. Matsuda, H. Fujii, H(infinity) optimized wave-absorbing control—analytical and experimental results. J. Guidance Control Dyn. 16(6), 1146–1153 (1993)

    Article  Google Scholar 

  22. R. Morrison, Rc constant-argument driving-point admittances. IRE Trans. Circuit Theory 6(3), 310–317 (1959)

    Article  Google Scholar 

  23. M. Nakagawa, K. Sorimachi, Basic characteristics of a fractance device. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 75(12), 1814–1819 (1992)

    Google Scholar 

  24. K. Oprzȩdkiewicz, W. Mitkowski, E. Gawin, An estimation of accuracy of oustaloup approximation, in Challenges in Automation, Robotics and Measurement Techniques (Springer, Berlin, 2016), vol. 440, pp. 299–307

    Chapter  Google Scholar 

  25. A. Oustaloup, F. Levron, B. Mathieu, F .M.F.M .F. Nanot, Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(1), 25–39 (2000)

    Article  Google Scholar 

  26. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (Academic press, Cambridge, 1999)

    MATH  Google Scholar 

  27. A. Radwan, A. Soliman, A. Elwakil, A. Sedeek, On the stability of linear systems with fractional-order elements. Chaos Solitons Fractals 40(5), 2317–2328 (2009)

    Article  Google Scholar 

  28. A.G. Radwan, A.S. Elwakil, A.M. Soliman, On the generalization of second-order filters to the fractional-order domain. J. Circuits Syst. Comput. 18(02), 361–386 (2009)

    Article  Google Scholar 

  29. A.G. Radwan, A.M. Soliman, A.S. Elwakil, First-order filters generalized to the fractional domain. J. Circuits Syst. Comput. 17(01), 55–66 (2008)

    Article  Google Scholar 

  30. S. Roy, On the realization of a constant-argument immittance or fractional operator. IEEE Trans. Circuit Theory 14(3), 264–274 (1967)

    Article  Google Scholar 

  31. L.A. Said, S.M. Ismail, A.G. Radwan, A.H. Madian, M.F.A. El-Yazeed, A.M. Soliman, On the optimization of fractional order low-pass filters. Circuits Syst. Signal Process. 35(6), 2017–2039 (2016)

    Article  MathSciNet  Google Scholar 

  32. L.A. Said, A.G. Radwan, A.H. Madian, A.M. Soliman, Fractional-order inverting and non-inverting filters based on CFOA, in 2016 39th International Conference on Telecommunications and Signal Processing (TSP) (IEEE, 2016)

  33. L.A. Said, A.G. Radwan, A.H. Madian, A.M. Soliman, Fractional order oscillator design based on two-port network. Circuits Syst. Signal Process. 35(9), 3086–3112 (2016)

    Article  MathSciNet  Google Scholar 

  34. L.A. Said, A.G. Radwan, A.H. Madian, A.M. Soliman, Three fractional-order-capacitors-based oscillators with controllable phase and frequency. J. Circuits Syst. Comput. 26(10), 1750160 (2017)

    Article  Google Scholar 

  35. M.S. Semary, A.G. Radwan, H.N. Hassan, Fundamentals of fractional-order LTI circuits and systems: number of poles, stability, time and frequency responses. Int. J. Circuit Theory Appl. 44(12), 2114–2133 (2016)

    Article  Google Scholar 

  36. A. Soltan, A.G. Radwan, A.M. Soliman, CCII based fractional filters of different orders. J. Adv. Res. 5(2), 157–164 (2014)

    Article  Google Scholar 

  37. A. Soltan, A.G. Radwan, A.M. Soliman, Fractional order Sallen–Key and KHN filters: stability and poles allocation. Circuits Syst. Signal Process. 34(5), 1461–1480 (2014)

    Article  Google Scholar 

  38. R. Sotner, J. Jerabek, J. Petrzela, O. Domansky, G. Tsirimokou, C. Psychalinos, Synthesis and design of constant phase elements based on the multiplication of electronically controllable bilinear immittances in practice. AEU Int. J. Electron. Commun. 78, 98–113 (2017)

    Article  Google Scholar 

  39. R. Sotner, J. Jerabek, J. Petrzela, T. Dostal, Simple approach for synthesis of fractional-order grounded immittances based on otas, in 2016 39th International Conference on Telecommunications and Signal Processing (TSP) (IEEE, 2016), pp. 563–568

  40. A. Tepljakov, E. Petlenkov, J. Belikov, Closed-loop identification of fractional-order models using FOMCON toolbox for MATLAB, in 2014 14th Biennial Baltic Electronic Conference (BEC) (IEEE, 2014)

  41. M.F. Tolba, A.M. AbdelAty, N.S. Soliman, L.A. Said, A.H. Madian, A.T. Azar, A.G. Radwan, Fpga implementation of two fractional order chaotic systems. AEU Int. J. Electron. Commun. 78, 162–172 (2017)

    Article  Google Scholar 

  42. G. Tsirimokou, A. Kartci, J. Koton, N. Herencsar, C. Psychalinos, Comparative study of fractional-order differentiators and integrators, in 2017 40th International Conference on Telecommunications and Signal Processing (TSP) (IEEE, 2017), pp. 714–717

  43. G. Tsirimokou, A. Kartci, J. Koton, N. Herencsar, C. Psychalinos, Comparative study of discrete component realizations of fractional-order capacitor and inductor active emulators. J. Circuits Syst. Comput. 27(11), 1850170 (2018)

    Article  Google Scholar 

  44. G. Tsirimokou, C. Psychalinos, A. Elwakil, K. Salama, Experimental verification of on-chip cmos fractional-order capacitor emulators. Electron. Lett. 52(15), 1298–1300 (2016)

    Article  Google Scholar 

  45. G. Tsirimokou, C. Psychalinos, A.S. Elwakil, Emulation of a constant phase element using operational transconductance amplifiers. Analog Integr. Circuits Signal Process. 85(3), 413–423 (2015)

    Article  Google Scholar 

  46. D. Valério, J.S. da Costa, Introduction to single-input, single-output fractional control. IET Control Theory Appl. 5(8), 1033–1057 (2011)

    Article  MathSciNet  Google Scholar 

  47. J. Valsa, P. Dvorak, M. Friedl, Network model of the CPE. Radioengineering 20(3), 619–626 (2011)

    Google Scholar 

  48. J. Valsa, J. Vlach, Rc models of a constant phase element. Int. J. Circuit Theory Appl. 41(1), 59–67 (2013)

    Google Scholar 

  49. C. Vastarouchas, G. Tsirimokou, C. Psychalinos, Extraction of cole-cole model parameters through low-frequency measurements. AEU Int. J. Electron. Commun. 84, 355–359 (2017)

    Article  Google Scholar 

  50. D. Yousri, A.M. AbdelAty, L.A. Said, A. AboBakr, A.G. Radwan, Biological inspired optimization algorithms for cole-impedance parameters identification. AEU Int. J. Electron. Commun. 78, 79–89 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lobna A. Said.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamed, E.M., AbdelAty, A.M., Said, L.A. et al. Effect of Different Approximation Techniques on Fractional-Order KHN Filter Design. Circuits Syst Signal Process 37, 5222–5252 (2018). https://doi.org/10.1007/s00034-018-0833-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0833-5

Keywords

Navigation