Skip to main content
Log in

An \(\ell _p\)-norm Based Method for Off-grid DOA Estimation

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The sparse signal recovery-based direction of arrival (DOA) estimation has received a great deal of attention over the past decade. From the sparse representation point of view, \(\ell _0\)-norm is the best choice to evaluate the sparsity of a vector. However, solving an \(\ell _0\)-norm minimization problem is non-deterministic polynomial hard (NP-hard). Thus, The common idea for many sparse DOA estimation methods is to use the \(\ell _1\)-norm as the sparsity metric. However, its sparse solution may not coincide with the solution resulting from the \(\ell _0\)-norm thus deteriorating the DOA estimation performance. In this paper, we propose a new sparse method based on \(\ell _p\) (\(0<p<1\)) regularization for DOA estimation to achieve a sparser solution than \(\ell _1\) regularization. In particular, we use the Taylor expansion to convert the \(\ell _p\)-norm minimization problem to a weighted \(\ell _1\)-norm problem. Then, a two-step iterative method is employed to achieve the DOA estimate. The \(\ell _p\) (\(0<p<1\)) regularization is able to improve the angle resolution, leading to an improved performance in low SNR and correlated signal scenarios. Numerical results show that our proposed method has better estimation performance than many other methods do.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Bekkerman, J. Tabrikian, Target detection and localization using MIMO radars and sonars. IEEE Trans. Signal Proces. 54(10), 3873–3883 (2006)

    Article  MATH  Google Scholar 

  2. E.J. Candes, The restricted isometry property and its implications for compressed sensing. Comptes Rendus Math. 346(9–10), 589–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. E.J. Candes, M.B. Wakin, S.P. Boyd, Enhancing sparsity by reweighted \(\ell _1\) minimization. J. Fourier Anal. Appl. 14(5), 877–905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Chartrand, Restricted isometry properties and nonconvex compressive sensing. IEEE Signal Proces. Lett. 14(10), 707–710 (2007)

    Article  Google Scholar 

  5. R. Chartrand, Fast algorithms for nonconvex compressive sensing: Mri reconstruction from very few data, in IEEE International Symposium on Biomedical Imaging: From Nano to Macro, June 2009, pp. 262–265

  6. R. Chartrand, V. Staneva, Exact reconstruction of sparse signals via nonconvex minimization. Inverse Prob. 24(3), 20–35 (2008)

    Article  Google Scholar 

  7. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. D.L. Donoho, High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension. Discret. Comput. Geom. 35(4), 617–652 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Fan, F. Gao, G. Wang, Z. Zhong, A. Nallanathan, Angle domain signal processing-aided channel estimation for indoor 60-ghz TDD/FDD massive MIMO systems. IEEE J. Sel. Areas Commun. 35(9), 1948–1961 (2017)

    Article  Google Scholar 

  10. Y. Gu, N.A. Goodman, Information-theoretic compressive sensing kernel optimization and Bayesian Cramer-Rao bound for time delay estimation. IEEE Trans. Signal Process. 65(17), 4525–4537 (2017)

    Article  MathSciNet  Google Scholar 

  11. Y. Gu, N.A. Goodman, A. Ashok, Radar target profiling and recognition based on TSI-optimized compressive sensing kernel. IEEE Trans. Signal Process. 62(12), 3194–3207 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. M.M. Hyder, K. Mahata, Direction-of-arrival estimation using a mixed \(\ell_{2,0}\) norm approximation. IEEE Trans. Signal Process. 58(9), 4646–4655 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Jagannath, K.V.S. Hari, Block sparse estimator for grid matching in single snapshot DoA estimation. IEEE Signal Process. Lett. 20(11), 1038–1041 (2013)

    Article  Google Scholar 

  14. S. Liu, Y.D. Zhang, T. Shan, R. Tao, Structure-aware Bayesian compressive sensing for frequency-hopping spectrum estimation with missing observations. IEEE Trans. Signal Process. 66(8), 2153–2166 (2018)

    Article  MathSciNet  Google Scholar 

  15. M. Malek-Mohammadi, M. Babaie-Zadeh, M. Skoglund, Performance guarantees for Schatten-p quasi-norm minimization in recovery of low-rank matrices. Sig. Process. 114, 225–230 (2015)

    Article  Google Scholar 

  16. D. Malioutov, M. Cetin, A.S. Willsky, A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53(8), 3010–3022 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Meinshausen, Y. Bin, Lasso-type recovery of sparse representations for high-dimensional data. Ann. Stat. 37(1), 246–270 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. B.K. Natarajan, Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Needell, R. Vershynin, Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE Journal of Selected Topics in Signal Processing 4(2), 310–316 (2010)

    Article  Google Scholar 

  20. A. Rakotomamonjy, R. Flamary, G. Gasso, S. Canu, \(\ell_{p}-\ell_{q}\) penalty for sparse linear and sparse multiple kernel multitask learning. IEEE Trans. Neural Networks 22(8), 1307–1320 (2011)

    Article  Google Scholar 

  21. R. Roy, T. Kailath, ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37(7), 984–995 (1989)

    Article  MATH  Google Scholar 

  22. R. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  23. Z. Shi, C. Zhou, Y. Gu, N.A. Goodman, F. Qu, Source estimation using coprime array: A sparse reconstruction perspective. IEEE Sens. J. 17(3), 755–765 (2017)

    Article  Google Scholar 

  24. J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Wang, Y.D. Zhang, W. Wang, Robust DOA estimation in the presence of miscalibrated sensors. IEEE Signal Process. Lett. 24(7), 1073–1077 (2017)

    Article  Google Scholar 

  26. B. Wang, W. Wang, G. Yujie, S. Lei, Underdetermined DOA estimation of quasi-stationary signals using a partly-calibrated array. Sensors 17(4), 702 (2017)

    Article  Google Scholar 

  27. B. Wang, Y.D. Zhang, W. Wang, Robust group compressive sensing for DOA estimation with partially distorted observations. EURASIP J. Adv. Signal Process. 2016(1), 128 (2016)

    Article  Google Scholar 

  28. X. Wu, Wei-Ping Zhu, and J. Yan. Direction of arrival estimation for off-grid signals based on sparse Bayesian learning. IEEE Sens. J. 16(7), 2004–2016 (2016)

    Article  Google Scholar 

  29. X. Wu, W.-P. Zhu, A Toeplitz covariance matrix reconstruction approach for direction-of-arrival estimation. IEEE Trans. Veh. Technol. 66(9), 8223–8237 (2017)

    Article  Google Scholar 

  30. W. Xiaohuan, W.-P. Zhu, J. Yan, Z. Zhang, Two sparse-based methods for off-grid direction-of-arrival estimation. Sig. Process. 142, 87–95 (2018)

    Article  Google Scholar 

  31. Z. Xu, X. Chang, F. Xu, H. Zhang, \(l_{1/2}\) regularization: A thresholding representation theory and a fast solver. IEEE Transactions on Neural Networks and Learning Systems 23(7), 1013–1027 (2012)

    Article  Google Scholar 

  32. Z. Yang, L. Xie, C. Zhang, Off-grid direction of arrival estimation using sparse Bayesian inference. IEEE Trans. Signal Process. 61(1), 38–43 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Zhou, Y. Gu, S. He, Z. Shi, A robust and efficient algorithm for coprime array adaptive beamforming. IEEE Trans. Veh. Technol. 67(2), 1099–1112 (2018)

    Article  Google Scholar 

  34. C. Zhou, Y. Gu, Y.D. Zhang, Z. Shi, T. Jin, X. Wu, Compressive sensing-based coprime array direction-of-arrival estimation. IET Commun. 11(11), 1719–1724 (2017)

    Article  Google Scholar 

  35. C. Zhou, Z. Shi, Y. Gu, X. Shen, Decom: DOA estimation with combined MUSIC for coprime array, in 2013 International Conference on Wireless Communications and Signal Processing, pp. 1–5 (2013)

  36. Chengwei Zhou and Jinfang Zhou, Direction-of-arrival estimation with coarray ESPRIT for coprime array. Sensors 17(8), 1779 (2017)

    Article  Google Scholar 

  37. H. Zhu, G. Leus, G.B. Giannakis, Sparsity-cognizant total least-squares for perturbed compressive sampling. IEEE Trans. Signal Proces. 59(5), 2002–2016 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (61671144, 61471205, 61771256), and by the Regroupement Strategique en Microelectronique du Quebec (ReSMiQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wu, X., Li, C. et al. An \(\ell _p\)-norm Based Method for Off-grid DOA Estimation. Circuits Syst Signal Process 38, 904–917 (2019). https://doi.org/10.1007/s00034-018-0892-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0892-7

Keywords

Navigation