Abstract
Despite extensive availability of filters for denoising, speckle noise suppression remains a challenging task. Speckle noise also hinders tasks such as efficient extraction of features, recognition, analysis, detection of edges, etc. Therefore, in this paper, motivated by the impressive performance of time delay regularization in additive noise removal, we develop a class of nonlinear diffusion-based coupled partial differential equation models for multiplicative noise removal. This denoising framework considers separate partial differential equations to handle diffusion function as well as fidelity term. By using a maximum a posteriori regularization approach, we can derive an energy functional and study the associated evolution problem which corresponds to the denoised image we want to recover. We then evaluate the effectiveness of our model with several standard test images and real ultrasound images. Qualitative and quantitative studies confirm that the proposed model is robust in comparison with state-of-the-art approaches. The denoised images have appealing visual characteristics with different levels of noise and textures while preserving the important details of the original image.













Similar content being viewed by others
References
A. Achim, A. Bezerianos, P. Tsakalides, Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Trans. Med. Imaging 20(8), 772–783 (2001)
B. Aiazzi, L. Alparone, S. Baronti, Multiresolution local-statistics speckle filtering based on a ratio Laplacian pyramid. IEEE Trans. Geosci. Remote Sens. 36(5), 1466–1476 (1998)
S. Aja-Fernández, C. Alberola-López, On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Trans. Image Process. 15(9), 2694–2701 (2006)
L. Alparone, S. Baronti, R. Carla, Two-dimensional rank-conditioned median filter. IEEE Trans. Circuits Syst. II: Analog Digital Signal Process. 42(2), 130–132 (1995)
L. Alparone, A. Garzelli, Decimated geometric filter for edge-preserving smoothing of non-white image noise. Pattern Recognit. Lett. 19(1), 89–96 (1998)
H. Amann, Time-delayed Perona–Malik type problems. Acta Math. Univ. Comen. 76(1), 15–38 (2007)
F. Argenti, A. Lapini, T. Bianchi, L. Alparone, A tutorial on speckle reduction in synthetic aperture radar images. IEEE Geosci. Remote Sens. Mag. 1(3), 6–35 (2013)
G. Aubert, J.F. Aujol, A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)
G. Aubert, P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, vol. 147 (Springer, Berlin, 2006)
A. Buades, B. Coll, J.M. Morel, On image denoising methods. SIAM Multiscale Model. Simul. 4(2), 490–530 (2005)
A. Buades, B. Coll, J.M. Morel, A non-local algorithm for image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 2. IEEE, pp. 60–65 (2005)
C.B. Burckhardt, Speckle in ultrasound b-mode scans. IEEE Trans. Sonics Ultrason. 25(1), 1–6 (1978)
P. Coupé, P. Hellier, C. Kervrann, C. Barillot, Bayesian non local means-based speckle filtering. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. IEEE, pp. 1291–1294 (2008)
T.R. Crimmins, Geometric filter for speckle reduction. Appl. Opt. 24(10), 1438–1443 (1985)
C.A. Deledalle, L. Denis, F. Tupin, Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans. Image Process. 18(12), 2661–2672 (2009)
G. Dong, Z. Guo, B. Wu, A convex adaptive total variation model based on the gray level indicator for multiplicative noise removal. Abstr. Appl. Anal. (2013). https://doi.org/10.1155/2013/912373
V. Dutt, Statistical analysis of ultrasound echo envelope. Ultrasound Research Laboratory, p. 181 (1995)
I. Elyasi, M.A. Pourmina, Reduction of speckle noise ultrasound images based on TV regularization and modified Bayes shrink techniques. Opt. Int. J. Light Electron Opt. 127(24), 11732–11744 (2016)
V.S. Frost, J.A. Stiles, K.S. Shanmugan, J.C. Holtzman, A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 2, 157–166 (1982)
P. Guidotti, Anisotropic diffusions of image processing from Perona–Malik on. Adv. Stud. Pure Math. 99, 20XX (2015)
X. Hao, S. Gao, X. Gao, A novel multiscale nonlinear thresholding method for ultrasonic speckle suppressing. IEEE Trans. Med. Imaging 18(9), 787–794 (1999)
Y. Hao, J. Xu, S. Li, X. Zhang, A variational model based on split Bregman method for multiplicative noise removal. AEU Int. J. Electron. Commun. 69(9), 1291–1296 (2015)
L.L. Huang, L. Xiao, Z.H. Wei, Multiplicative noise removal via a novel variational model. EURASIP J. Image Video Process. 2010(1), 1 (2010)
Y.M. Huang, M.K. Ng, Y.W. Wen, A new total variation method for multiplicative noise removal. SIAM J. Imaging Sci. 2(1), 20–40 (2009)
Ing. Martin Zukal Ing. Radek Bene, I.P.k.I.K.h.: Ultrasound image database. http://splab.cz/en/download/databaze/ultrasound
S.K. Jain, R.K. Ray, A. Bhavsar, Iterative solvers for image denoising with diffusion models: a comparative study. Comput. Math. Appl. 70(3), 191–211 (2015)
P. Jidesh, A. Bini, A complex diffusion driven approach for removing data-dependent multiplicative noise. In: International Conference on Pattern Recognition and Machine Intelligence. Springer, pp. 284–289 (2013)
J.S. Jin, Y. Wang, J. Hiller, An adaptive nonlinear diffusion algorithm for filtering medical images. IEEE Trans. Inf Technol. Biomed. 4(4), 298–305 (2000)
Z. Jin, X. Yang, Analysis of a new variational model for multiplicative noise removal. J. Math. Anal. Appl. 362(2), 415–426 (2010)
Z. Jin, X. Yang, A variational model to remove the multiplicative noise in ultrasound images. J. Math. Imaging Vis. 39(1), 62–74 (2011)
T. Joel, R. Sivakumar, An extensive review on despeckling of medical ultrasound images using various transformation techniques. Appl. Acoust. 138, 18–27 (2018)
K. Krissian, C.F. Westin, R. Kikinis, K.G. Vosburgh, Oriented speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 16(5), 1412–1424 (2007)
D.T. Kuan, A.A. Sawchuk, T.C. Strand, P. Chavel, Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans. Pattern Anal. Mach. Intell. 2, 165–177 (1985)
J.S. Lee, Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2, 165–168 (1980)
M. Liu, Q. Fan, A modified convex variational model for multiplicative noise removal. J. Vis. Commun. Image Represent. 36, 187–198 (2016)
Q. Liu, X. Li, T. Gao, A nondivergence p-Laplace equation in a removing multiplicative noise model. Nonlinear Anal.: Real World Appl. 14(5), 2046–2058 (2013)
C.P. Loizou, C.S. Pattichis, C.I. Christodoulou, R.S. Istepanian, M. Pantziaris, A. Nicolaides, Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(10), 1653–1669 (2005)
S. Medison, Atlas of ultrasound images. http://www.medison.ru/uzi/eng/all/
P. Meer, R.H. Park, K. Cho, Multiresolution adaptive image smoothing. CVGIP Graph. Models Image Process. 56(2), 140–148 (1994)
M. Nitzberg, T. Shiota, Nonlinear image filtering with edge and corner enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 14(8), 826–833 (1992)
P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)
R. Prager, A. Gee, G. Treece, L. Berman, Speckle Detection in Ultrasound Images Using First Order Statistics (Department of Engineering, University of Cambridge, Cambridge, 2001)
L. Rudin, P.L. Lions, S. Osher, Multiplicative denoising and deblurring: theory and algorithms, in Geometric Level Set Methods in Imaging, Vision, and Graphics, ed. by L. Rudin, P.L. Lions, S. Osher (Springer, New York, 2003), pp. 103–119
L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)
J. Shi, S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM J. Imaging Sci. 1(3), 294–321 (2008)
X.C. Tai, K.A. Lie, T.F. Chan, S. Osher, Image Processing Based on Partial Differential Equations: Proceedings of the International Conference on PDE-Based Image Processing and Related Inverse Problems, CMA, Oslo, 8–12 August 2005. Springer (2006)
P.C. Tay, S.T. Acton, J.A. Hossack, Ultrasound despeckling using an adaptive window stochastic approach. In: 2006 IEEE International Conference on Image Processing. IEEE, pp. 2549–2552 (2006)
T. Teuber, A. Lang, A new similarity measure for nonlocal filtering in the presence of multiplicative noise. Comput. Stat. Data Anal. 56(12), 3821–3842 (2012)
The usc-sipi image database. http://sipi.usc.edu/database/
Z. Wang, A.C. Bovik, Mean squared error: love it or leave it? A new look at signal fidelity measures. Sig. Process. Mag. IEEE 26(1), 98–117 (2009)
Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
J. Weickert, A review of nonlinear diffusion filtering, in Scale-Space Theory in Computer Vision, ed. by B. ter Haar Romeny, L. Florack, J. Koenderink, M. Viergever (Springer, Berlin, 1997), pp. 1–28
J. Weickert, Anisotropic Diffusion in Image Processing, vol. 1 (Teubner, Stuttgart, 1998)
R.G. White, A simulated annealing algorithm for SAR and MTI image cross-section estimation. In: Proceedings on SPIE, vol. 2316, pp. 137–145 (1994)
Y. Yu, S.T. Acton, Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11(11), 1260–1270 (2002)
Z. Zhou, Z. Guo, G. Dong, J. Sun, D. Zhang, B. Wu, A doubly degenerate diffusion model based on the gray level indicator for multiplicative noise removal. IEEE Trans. Image Process. 24(1), 249–260 (2015)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Jain, S.K., Ray, R.K. & Bhavsar, A. A Nonlinear Coupled Diffusion System for Image Despeckling and Application to Ultrasound Images. Circuits Syst Signal Process 38, 1654–1683 (2019). https://doi.org/10.1007/s00034-018-0913-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-018-0913-6
Keywords
- Despeckling
- Speckle noise
- Nonlinear diffusion
- Coupled system
- Numerical scheme
- Filtering
- Ultrasound imaging