Skip to main content
Log in

A Nonlinear Coupled Diffusion System for Image Despeckling and Application to Ultrasound Images

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Despite extensive availability of filters for denoising, speckle noise suppression remains a challenging task. Speckle noise also hinders tasks such as efficient extraction of features, recognition, analysis, detection of edges, etc. Therefore, in this paper, motivated by the impressive performance of time delay regularization in additive noise removal, we develop a class of nonlinear diffusion-based coupled partial differential equation models for multiplicative noise removal. This denoising framework considers separate partial differential equations to handle diffusion function as well as fidelity term. By using a maximum a posteriori regularization approach, we can derive an energy functional and study the associated evolution problem which corresponds to the denoised image we want to recover. We then evaluate the effectiveness of our model with several standard test images and real ultrasound images. Qualitative and quantitative studies confirm that the proposed model is robust in comparison with state-of-the-art approaches. The denoised images have appealing visual characteristics with different levels of noise and textures while preserving the important details of the original image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Achim, A. Bezerianos, P. Tsakalides, Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Trans. Med. Imaging 20(8), 772–783 (2001)

    Article  Google Scholar 

  2. B. Aiazzi, L. Alparone, S. Baronti, Multiresolution local-statistics speckle filtering based on a ratio Laplacian pyramid. IEEE Trans. Geosci. Remote Sens. 36(5), 1466–1476 (1998)

    Article  Google Scholar 

  3. S. Aja-Fernández, C. Alberola-López, On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Trans. Image Process. 15(9), 2694–2701 (2006)

    Article  Google Scholar 

  4. L. Alparone, S. Baronti, R. Carla, Two-dimensional rank-conditioned median filter. IEEE Trans. Circuits Syst. II: Analog Digital Signal Process. 42(2), 130–132 (1995)

    Article  Google Scholar 

  5. L. Alparone, A. Garzelli, Decimated geometric filter for edge-preserving smoothing of non-white image noise. Pattern Recognit. Lett. 19(1), 89–96 (1998)

    Article  Google Scholar 

  6. H. Amann, Time-delayed Perona–Malik type problems. Acta Math. Univ. Comen. 76(1), 15–38 (2007)

    MathSciNet  MATH  Google Scholar 

  7. F. Argenti, A. Lapini, T. Bianchi, L. Alparone, A tutorial on speckle reduction in synthetic aperture radar images. IEEE Geosci. Remote Sens. Mag. 1(3), 6–35 (2013)

    Article  Google Scholar 

  8. G. Aubert, J.F. Aujol, A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Aubert, P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, vol. 147 (Springer, Berlin, 2006)

    Book  MATH  Google Scholar 

  10. A. Buades, B. Coll, J.M. Morel, On image denoising methods. SIAM Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Buades, B. Coll, J.M. Morel, A non-local algorithm for image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 2. IEEE, pp. 60–65 (2005)

  12. C.B. Burckhardt, Speckle in ultrasound b-mode scans. IEEE Trans. Sonics Ultrason. 25(1), 1–6 (1978)

    Article  Google Scholar 

  13. P. Coupé, P. Hellier, C. Kervrann, C. Barillot, Bayesian non local means-based speckle filtering. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. IEEE, pp. 1291–1294 (2008)

  14. T.R. Crimmins, Geometric filter for speckle reduction. Appl. Opt. 24(10), 1438–1443 (1985)

    Article  Google Scholar 

  15. C.A. Deledalle, L. Denis, F. Tupin, Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Trans. Image Process. 18(12), 2661–2672 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Dong, Z. Guo, B. Wu, A convex adaptive total variation model based on the gray level indicator for multiplicative noise removal. Abstr. Appl. Anal. (2013). https://doi.org/10.1155/2013/912373

  17. V. Dutt, Statistical analysis of ultrasound echo envelope. Ultrasound Research Laboratory, p. 181 (1995)

  18. I. Elyasi, M.A. Pourmina, Reduction of speckle noise ultrasound images based on TV regularization and modified Bayes shrink techniques. Opt. Int. J. Light Electron Opt. 127(24), 11732–11744 (2016)

    Article  Google Scholar 

  19. V.S. Frost, J.A. Stiles, K.S. Shanmugan, J.C. Holtzman, A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 2, 157–166 (1982)

    Article  Google Scholar 

  20. P. Guidotti, Anisotropic diffusions of image processing from Perona–Malik on. Adv. Stud. Pure Math. 99, 20XX (2015)

    MATH  MathSciNet  Google Scholar 

  21. X. Hao, S. Gao, X. Gao, A novel multiscale nonlinear thresholding method for ultrasonic speckle suppressing. IEEE Trans. Med. Imaging 18(9), 787–794 (1999)

    Article  Google Scholar 

  22. Y. Hao, J. Xu, S. Li, X. Zhang, A variational model based on split Bregman method for multiplicative noise removal. AEU Int. J. Electron. Commun. 69(9), 1291–1296 (2015)

    Article  Google Scholar 

  23. L.L. Huang, L. Xiao, Z.H. Wei, Multiplicative noise removal via a novel variational model. EURASIP J. Image Video Process. 2010(1), 1 (2010)

    Article  Google Scholar 

  24. Y.M. Huang, M.K. Ng, Y.W. Wen, A new total variation method for multiplicative noise removal. SIAM J. Imaging Sci. 2(1), 20–40 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ing. Martin Zukal Ing. Radek Bene, I.P.k.I.K.h.: Ultrasound image database. http://splab.cz/en/download/databaze/ultrasound

  26. S.K. Jain, R.K. Ray, A. Bhavsar, Iterative solvers for image denoising with diffusion models: a comparative study. Comput. Math. Appl. 70(3), 191–211 (2015)

    Article  MathSciNet  Google Scholar 

  27. P. Jidesh, A. Bini, A complex diffusion driven approach for removing data-dependent multiplicative noise. In: International Conference on Pattern Recognition and Machine Intelligence. Springer, pp. 284–289 (2013)

  28. J.S. Jin, Y. Wang, J. Hiller, An adaptive nonlinear diffusion algorithm for filtering medical images. IEEE Trans. Inf Technol. Biomed. 4(4), 298–305 (2000)

    Article  Google Scholar 

  29. Z. Jin, X. Yang, Analysis of a new variational model for multiplicative noise removal. J. Math. Anal. Appl. 362(2), 415–426 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Z. Jin, X. Yang, A variational model to remove the multiplicative noise in ultrasound images. J. Math. Imaging Vis. 39(1), 62–74 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Joel, R. Sivakumar, An extensive review on despeckling of medical ultrasound images using various transformation techniques. Appl. Acoust. 138, 18–27 (2018)

    Article  Google Scholar 

  32. K. Krissian, C.F. Westin, R. Kikinis, K.G. Vosburgh, Oriented speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 16(5), 1412–1424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. D.T. Kuan, A.A. Sawchuk, T.C. Strand, P. Chavel, Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans. Pattern Anal. Mach. Intell. 2, 165–177 (1985)

    Article  Google Scholar 

  34. J.S. Lee, Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2, 165–168 (1980)

    Article  Google Scholar 

  35. M. Liu, Q. Fan, A modified convex variational model for multiplicative noise removal. J. Vis. Commun. Image Represent. 36, 187–198 (2016)

    Article  Google Scholar 

  36. Q. Liu, X. Li, T. Gao, A nondivergence p-Laplace equation in a removing multiplicative noise model. Nonlinear Anal.: Real World Appl. 14(5), 2046–2058 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. C.P. Loizou, C.S. Pattichis, C.I. Christodoulou, R.S. Istepanian, M. Pantziaris, A. Nicolaides, Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(10), 1653–1669 (2005)

    Article  Google Scholar 

  38. S. Medison, Atlas of ultrasound images. http://www.medison.ru/uzi/eng/all/

  39. P. Meer, R.H. Park, K. Cho, Multiresolution adaptive image smoothing. CVGIP Graph. Models Image Process. 56(2), 140–148 (1994)

    Article  Google Scholar 

  40. M. Nitzberg, T. Shiota, Nonlinear image filtering with edge and corner enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 14(8), 826–833 (1992)

    Article  Google Scholar 

  41. P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  42. R. Prager, A. Gee, G. Treece, L. Berman, Speckle Detection in Ultrasound Images Using First Order Statistics (Department of Engineering, University of Cambridge, Cambridge, 2001)

    MATH  Google Scholar 

  43. L. Rudin, P.L. Lions, S. Osher, Multiplicative denoising and deblurring: theory and algorithms, in Geometric Level Set Methods in Imaging, Vision, and Graphics, ed. by L. Rudin, P.L. Lions, S. Osher (Springer, New York, 2003), pp. 103–119

    Chapter  Google Scholar 

  44. L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Shi, S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM J. Imaging Sci. 1(3), 294–321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. X.C. Tai, K.A. Lie, T.F. Chan, S. Osher, Image Processing Based on Partial Differential Equations: Proceedings of the International Conference on PDE-Based Image Processing and Related Inverse Problems, CMA, Oslo, 8–12 August 2005. Springer (2006)

  47. P.C. Tay, S.T. Acton, J.A. Hossack, Ultrasound despeckling using an adaptive window stochastic approach. In: 2006 IEEE International Conference on Image Processing. IEEE, pp. 2549–2552 (2006)

  48. T. Teuber, A. Lang, A new similarity measure for nonlocal filtering in the presence of multiplicative noise. Comput. Stat. Data Anal. 56(12), 3821–3842 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. The usc-sipi image database. http://sipi.usc.edu/database/

  50. Z. Wang, A.C. Bovik, Mean squared error: love it or leave it? A new look at signal fidelity measures. Sig. Process. Mag. IEEE 26(1), 98–117 (2009)

    Article  Google Scholar 

  51. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  52. J. Weickert, A review of nonlinear diffusion filtering, in Scale-Space Theory in Computer Vision, ed. by B. ter Haar Romeny, L. Florack, J. Koenderink, M. Viergever (Springer, Berlin, 1997), pp. 1–28

    Google Scholar 

  53. J. Weickert, Anisotropic Diffusion in Image Processing, vol. 1 (Teubner, Stuttgart, 1998)

    MATH  Google Scholar 

  54. R.G. White, A simulated annealing algorithm for SAR and MTI image cross-section estimation. In: Proceedings on SPIE, vol. 2316, pp. 137–145 (1994)

  55. Y. Yu, S.T. Acton, Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11(11), 1260–1270 (2002)

    Article  MathSciNet  Google Scholar 

  56. Z. Zhou, Z. Guo, G. Dong, J. Sun, D. Zhang, B. Wu, A doubly degenerate diffusion model based on the gray level indicator for multiplicative noise removal. IEEE Trans. Image Process. 24(1), 249–260 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra K. Ray.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S.K., Ray, R.K. & Bhavsar, A. A Nonlinear Coupled Diffusion System for Image Despeckling and Application to Ultrasound Images. Circuits Syst Signal Process 38, 1654–1683 (2019). https://doi.org/10.1007/s00034-018-0913-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0913-6

Keywords

Mathematics Subject Classification