Skip to main content
Log in

A Flux-Controlled Logarithmic Memristor Model and Emulator

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The HP TiO\(_2\) model, as it is well known, is the most widely used physical model of memristor. However, deriving a mathematical model that fully characterizes the HP TiO\(_2\) memristor is a challenging task. As a result, simplified models such as the nonlinear quadratic model and the cubic memristor model are utilized in theoretic quantitative analysis of memristor circuits. These models result in unsatisfactory performance for many applications. To mitigate this problem, this paper proposes a new nonlinear logarithmic model to characterize memristor. Additionally, a memristor emulator circuit is developed. Finally, the relationships among the HP TiO\(_2\) memristor, the logarithmic model, and the emulator are thoroughly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.F. Abdelkader, S.M. Abuelenin, Memristor model based on fuzzy window function, in IEEE International Conference on Fuzzy Systems (2015), pp. 1–5

  2. S.P. Adhikari, M.P. Sah, H. Kim, L.O. Chua, Three fingerprints of memristor. IEEE Trans. Circuits Syst. I Regul Pap 11, 3008–3021 (2013)

    Article  Google Scholar 

  3. B.C. Bao, Z. Liu, J.P. Xu, Initial state dependent dynamical behaviors in memristor based chaotic circuit. Chin. Phys. Lett. 7, 51–53 (2010)

    Google Scholar 

  4. Z. Biolek, D. Biolek, V. Biolkova, Improved model of TiO\(_{2}\) memristor. Radioengineering 2, 378–383 (2015)

    Article  Google Scholar 

  5. Z. Biolek, D. Biolek, V. Biolkova, SPICE model of memristor with nonlinear dopant drift. Radioengineering 2, 210–214 (2009)

    Google Scholar 

  6. Z. Biolek, D. Biolek, V. Biolkova, Z. Kolka, A. Ascoli, R. Tetzlaff, Analysis of memristors with nonlinear memristance versus state maps. Int. J. Circuit Theory Appl. 45, 1814–1832 (2017)

    Article  Google Scholar 

  7. D. Biolek, Z. Kolka, V. Biolkova, Z. Biolek, Memristor models for SPICE simulation of extremely large memristive networks. Proc. IEEE Int. Symp. Circuits Syst. 14, 389–392 (2016)

    Google Scholar 

  8. A. Chanthbouala, V. Garcia, R.O. Cherifi, K. Bouzehouane, S. Fusil, X. Moya, A ferroelectric memristor. Nat. Mater. 11, 860–864 (2012)

    Article  Google Scholar 

  9. W. Chen, X. Yang, F.Z. Wang, An omnipotent memristor model with controllable window functions, in International Conference on Modelling and Simulation (2015), pp. 600–605

  10. L.O. Chua, Everything you wish to know about memristors but are afraid to ask. Radioengineering 2, 319–368 (2015)

    Article  Google Scholar 

  11. L.O. Chua, Memristor-the missing circuit element. IEEE Trans. Circuits Theory 18, 507–519 (1971)

    Article  Google Scholar 

  12. F. Corinto, A. Ascoli, A boundary condition-based approach to the modeling of memristor nanostructures. IEEE Trans. Circuits Syst. I Regul. Pap. 59, 2713–2726 (2012)

    Article  MathSciNet  Google Scholar 

  13. F. Corinto, A. Ascoli, Memristive diode bridge with LCR filter. Electron. Lett. 14, 824–825 (2012)

    Article  Google Scholar 

  14. F. Corinto, P.P. Civalleri, L.O. Chua, A theoretical approach to memristor devices. IEEE J. Emerg. Sel. Top. Circuits Syst. 2, 123–132 (2015)

    Article  Google Scholar 

  15. F. Corinto, M. Forti, Memristor circuits: flux-charge analysis method. IEEE Trans. Circuits Syst. I Regul. Pap. 11, 1997–2009 (2016)

    Article  Google Scholar 

  16. E. Gale, Uniform and piece-wise uniform fields in memristor models (2014), arXiv: 1404.5581

  17. M. Itoh, L. Chua, Memristor oscillators. Int. J. Bifurc. Chaos 11, 3183–3206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Y.N. Joglekar, S.J. Wolf, The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30, 661–675 (2009)

    Article  MATH  Google Scholar 

  19. H. Kim, M.P. Sah, C. Yang, S. Cho, L.O. Chua, Memristor emulator for memristor circuit application. IEEE Trans. Circuits Syst. I Regul. Pap. 10, 2422–2431 (2012)

    MathSciNet  Google Scholar 

  20. S. Kvatinsky, E.G. Friedman, A. Kolodny, U.C. Weiser, TEAM: threshold adaptive memristor model. IEEE Trans. Circuits Syst. I Regul. Pap. 1, 211–221 (2013)

    Article  MathSciNet  Google Scholar 

  21. H. Li, C. Wu, X. Jing, L. Wu, Fuzzy tracking control for nonlinear time-delay systems. IEEE Trans. Cybern. 47, 2020–2031 (2017)

    Article  Google Scholar 

  22. H. Li, C. Wu, L. Wu, H.-K. Lam, Y. Gao, Filtering of interval type-2 fuzzy systems with intermittent measurements. IEEE Trans. Cybern. 46, 668–678 (2016)

    Article  Google Scholar 

  23. J. Lu, J. Zhong, D.W.C. Ho, Y. Tang, J. Cao, On controllability of delayed boolean control networks. SIAM J. Control Optim. 54, 475–494 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Lu, J. Zhong, C. Huang, J. Cao, On pinning controllability of boolean control networks. IEEE Trans. Autom. Control 61, 1658–1663 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Merrikh Bayat, B. Hoskins, D.B. Strukov, Phenomenological modeling of memristive devices. Appl. Phys. A Mater. Sci. Process. 3, 779–786 (2015)

    Article  Google Scholar 

  26. B. Muthuswamy, Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 5, 1335–1350 (2010)

    Article  MATH  Google Scholar 

  27. R. Naous, M. Al-Shedivat, K.N. Salama, Stochasticity modeling in memristors. IEEE Trans. Nanotechnol. 1, 15–28 (2016)

    Article  Google Scholar 

  28. Y.V. Pershin, M.D. Ventra, Emulation of floating memcapacitors and meminductors using current conveyors. Electron. Lett. 4, 243–244 (2011)

    Article  Google Scholar 

  29. T. Prodromakis, B.P. Peh, C. Papavassiliou, C. Toumazou, A versatile memristor model with nonlinear dopant kinetics. IEEE Trans. Electron Devices 9, 3099–3105 (2011)

    Article  Google Scholar 

  30. M.P. Sah, R.K. Budhathoki, C. Yang, Expandable circuits of mutator-based memcapacitor emulator. Int. J. Bifurc. Chaos 23(5), 1330017 (2013)

    Article  MathSciNet  Google Scholar 

  31. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  32. A.C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, Sub-nanosecond switching of a tantalum oxide memristor. Nanotech 48, 485203(1)–485203(7) (2011)

    Google Scholar 

  33. I. Vourkas, D. Stathis, G.C. Sirakoulis, S. Hamdioui, Alternative architectures toward reliable memristive crossbar memories. IEEE Trans. Very Large Scale Integr. Syst. 1, 206–217 (2016)

    Article  Google Scholar 

  34. X. Wang, Y. Chen, H. Xi, D. Dimitrov, Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Lett. 3, 294–297 (2009)

    Article  Google Scholar 

  35. X. Wang, A. Fitch, Implementation of an analogue model of a memristor based on a light-dependent resistor. Chin. Phys. B 21(10), 108501 (2012)

    Article  Google Scholar 

  36. S. Wen, M.Z.Q. Chen, Z. Zeng, T. Huang, C. Li, Adaptive neural-fuzzy sliding-mode fault-tolerant control for uncertain nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 47, 2268–2278 (2017)

    Article  Google Scholar 

  37. S. Wen, R. Hu, Y. Yang, Z. Zeng, T. Huang, Y. Song, Memristor-based echo state network with online least mean square. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2825021

    Google Scholar 

  38. S. Wen, H. Wei, T. Huang, Z. Zeng, Memristive fully convolutional networks: an accurate hardware image-segmentor in deep learning. IEEE Trans. Emerg. Topics Comput. Intell. https://doi.org/10.1109/TETCI.2018.2829911

  39. S. Wen, S. Xiao, Y. Yang, Z. Yan, Z. Zeng, T. Huang, Adjusting the learning rate of memristor-based multilayer neural networks via fuzzy method. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. (2018). https://doi.org/10.1109/TCAD.2018.2834436

    Google Scholar 

  40. S. Wen, X. Xie, Z. Yan, T. Huang, Z. Zeng, General memristor with applications in multilayer neural networks. Neural Netw. (2018). https://doi.org/10.1016/j.neunet.2018.03.015

    Google Scholar 

  41. R.S. Williams, How we found the missing memristor. IEEE Spectr. 45, 28–35 (2008)

    Article  Google Scholar 

  42. C. Wu, J. Liu, Y. Xiong, L. Wu, Observer-based adaptive fault-tolerant tracking control of nonlinear nonstrict-feedback systems. IEEE Trans. Neural Netw. Learn. Syst. (2017). https://doi.org/10.1109/TNNLS.2017.2712619

    Google Scholar 

  43. S. Xiao, X. Xie, S. Wen, Z. Zeng, T. Huang, J. Jiang, GST-memristor-based online learning neural networks. Neurocomputing 272, 677–682 (2018)

    Article  Google Scholar 

  44. X. Xie, S. Wen, Z. Zeng, T. Huang, Memristor-based circuit implementation of pulse-coupled neural network with dynamical threshold generator. Neurocomputing 284, 10–16 (2018)

    Article  Google Scholar 

  45. K. Xu, Two memristor SPICE models and their applications in microwave devices. IEEE Trans. Nanotechnol. 3, 607–616 (2014)

    Article  Google Scholar 

  46. D.S. Yu, Y. Liang, H. Chen, Design of a memcapacitor emulator based on a memristor. Phys. Lett. 4, 394–399 (2012)

    Google Scholar 

  47. D.S. Yu, Y. Liang, H. Chen, Design of a practical memcapacitor emulator without grounded restriction. IEEE Trans. Circuits Syst. II Express Briefs 4, 207–211 (2013)

    Article  Google Scholar 

  48. Q. Zhou, H. Li, L. Wang, R. Lu, Prescribed performance observer-based adaptive fuzzy control for nonstrict-feedback stochastic nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. (2017). https://doi.org/10.1109/TSMC.2017.2738155

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiping Wen.

Additional information

This work was supported by the Natural Science Foundation of China under Grants 61673187 and 61673188. This publication was made possible by NPRP Grant: NPRP 8-274-2-107 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Zou, L., Wen, S. et al. A Flux-Controlled Logarithmic Memristor Model and Emulator. Circuits Syst Signal Process 38, 1452–1465 (2019). https://doi.org/10.1007/s00034-018-0926-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0926-1

Keywords

Navigation