Skip to main content
Log in

Robust Semiglobal Coordination of Coupled Harmonic Oscillator Systems Subject to Input Saturation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the problems of robust semiglobal coordination of coupled harmonic oscillator systems with input saturation together with dead zone and input additive disturbances, in which the coupled harmonic oscillators can serve as an approximation of modern complex systems in the field of system engineering, such as SoS (system of systems). By virtue of the parameterized low-and-high-gain feedback technique, sufficient conditions are provided to guarantee the robust semiglobal coordination of coupled harmonic oscillator systems with input saturation together with decentralized state-dependent input additive disturbances and distributed state-dependent input additive disturbances. Finally, numerical examples are proposed to verify all the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Chen, M. Shi, H. Sun, Y. Li, H. He, Distributed cooperative control and stability analysis of multiple DC electric springs in a DC microgrid. IEEE Trans. Ind. Electron. 65(7), 5611–5622 (2018)

    Article  Google Scholar 

  2. X. Chen, Y. Hou, S.Y.R. Hui, Distributed control of multiple electric springs for voltage control in microgrid. IEEE Trans. Smart Grid 8(3), 1350–1359 (2017)

    Article  Google Scholar 

  3. M.Z.Q. Chen, L. Zhang, H. Su, G. Chen, Stabilizing solution and parameter dependence of modified algebraic riccati equation with application to discrete-time network synchronization. IEEE Trans. Automat. Control 61(1), 228–233 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Y. Jiang, J. Liu, S. Wang, Consensus tracking algorithm via observer-based distributed output feedback for multi-agent systems under switching topology. Circuits Syst. Signal Process. 33(10), 3037–3052 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Lu, L. Zhang, X. Mao, Distributed information consensus filters for simultaneous input and state estimation. Circuits Syst. Signal Process. 32(2), 877–888 (2013)

    Article  MathSciNet  Google Scholar 

  6. Y. Liu, J. Slotine, A. Barabsi, Controllability of complex networks. Nature 473(7346), 167–73 (2011)

    Article  Google Scholar 

  7. A. Okubo, Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. Adv. Biophys. 22(22), 1–94 (1986)

    Article  Google Scholar 

  8. R. Olfati-Saber, R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Pan, W. Sun, H. Gao, J. Yu, Finite-time stabilization for vehicle active suspension systems with hard constraints. IEEE Trans. Intell. Transp. Syst. 16(5), 2663–2672 (2015)

    Article  Google Scholar 

  11. H. Pan, W. Sun, H. Gao, X. Jing, Disturbance observer-based adaptive tracking control with actuator saturation and its application. IEEE Trans. Autom. Sci. Eng. 13(2), 868–875 (2016)

    Article  Google Scholar 

  12. H. Pan, X. Jing, W. Sun, H. Gao, A bioinspired dynamics-based adaptive tracking control for nonlinear suspension systems IEEE Trans. Control Syst. Technol. (26)3, 903–914 (2018)

  13. H. Su, H. Wu, X. Chen, M.Z.Q. Chen, Positive edge consensus of complex networks. IEEE Trans. Syst. Man Cybern. Syst. (2017) https://doi.org/10.1109/TSMC.2017.2765678

  14. H. Su, H. Wu, X. Chen, Observer-based discrete-time nonnegative edge synchronization of networked systems. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2446–2455 (2017)

    Article  MathSciNet  Google Scholar 

  15. H. Su, M.Z.Q. Chen, J. Lam, Z. Lin, Semi-global leader-following consensus of linear multi-agent systems with input saturation via low gain feedback. IEEE Trans. Circuits I 60(7), 1881–1889 (2013)

    MathSciNet  Google Scholar 

  16. Q. Song, F. Liu, H. Su, A.V. Vasilakos, Semi-global and global containment control of multiagent systems with second-order dynamics and input saturation. Int. J. Robust Nonlinear 26(16), 3460–3480 (2016)

    Article  MATH  Google Scholar 

  17. H. Su, Y. Qiu, L. Wang, Semi-global output consensus of discrete-time multi-agent systems with input saturation and external disturbances. ISA Trans. 67, 131–139 (2017)

    Article  Google Scholar 

  18. H. Su, M.Z.Q. Chen, X. Wang, J. Lam, Semiglobal observer-based leader-following consensus with input saturation. IEEE Trans. Ind. Electron. 61(6), 2842–2850 (2014)

    Article  Google Scholar 

  19. H. Su, M.Z.Q. Chen, G. Chen, Robust semi-global coordinated tracking of linear multiagent systems with input saturation. Int. J. Robust Nonlinear 25(14), 2375–2390 (2015)

    Article  MATH  Google Scholar 

  20. J. Toner, Y. Tu, Hydrodynamics and phases of flocks. Ann. Phys. 318(1), 170–244 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. X. Wang, H. Su, X. Wang, B. Liu, Second-order consensus of multi-agent systems via periodically intermittent pinning control. Circuits Syst. Signal Process. 35(7), 2413–2431 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. X. Wang, X. Wang, H. Su, G. Chen, Fully distributed event-triggered consensus of multi-agent systems with input saturation. IEEE Trans. Ind. Electron. 64(6), 5055–5064 (2017)

    Article  Google Scholar 

  23. H. Wu, H. Su, Discrete-time positive edge-consensus for undirected and directed nodal networks. IEEE Trans. Circuits Syst. II: Express Briefs 65(2), 221–225 (2018)

    Article  Google Scholar 

  24. X. Wang, X. Wang, Semi-global consensus of multi-agent systems with intermittent communications and low-gain feedback. IET Control Theory A 9(5), 766–774 (2015)

    Article  MathSciNet  Google Scholar 

  25. X.L. Wang, H. Su, M.Z.Q. Chen, X.F. Wang, Observer-based robust coordinated control of multiagent systems with input saturation. IEEE Trans. Neural Netw. Learn. 29(5), 1933–1946 (2018)

    Article  MathSciNet  Google Scholar 

  26. X.L. Wang, H. Su, X.F. Wang, G. Chen, Robust semiglobal swarm tracking of coupled harmonic oscillators with input saturation and external disturbance. Int. J. Robust Nonlinear 28, 1566–1582 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Z. Zhao, Z. Lin, Semi-global leader-following consensus of multiple linear systems with position and rate limited actuators. Int. J. Robust Nonlinear 25(13), 2083–2100 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Zhou, X. Liao, T. Huang, H. Li, G. Chen, Event-based semiglobal consensus of homogenous linear multi-agent systems subject to input saturation. Asian J. Control 19(2), 564–574 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Z. Zhang, Z. Zuo, Y. Wang, Finite-time consensus of neutrally stable multi-agent systems in the presence of input saturation. J. Franklin Inst. (2017)https://doi.org/10.1016/j.jfranklin.2017.12.013

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 61403255 and the National Defense Science foundation project of China under Grant No. JCKY 2017207B005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, F., Sun, Y., Yu, M. et al. Robust Semiglobal Coordination of Coupled Harmonic Oscillator Systems Subject to Input Saturation. Circuits Syst Signal Process 38, 1982–1999 (2019). https://doi.org/10.1007/s00034-018-0949-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0949-7

Keywords

Navigation