Skip to main content
Log in

Finite-Time Passivity of Stochastic Markov Jump Neural Networks with Random Distributed Delays and Sensor Nonlinearities

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper investigates the problem of mean-square finite-time passivity of discrete-time stochastic Markov jump neural networks with distributed delays and sensor nonlinearities. The distributed delays and sensor nonlinearities are randomly varying and described by mode-dependent random sequences with known statistical information. The mean-square finite-time boundedness and mean-square finite-time passivity results are obtained based on Lyapunov-like functional method. And the mean-square finite-time passivity is also considered for neural networks with random infinite-distributed delays. Finally, a numerical example verifies the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Balasubramaniam, S. Lakshmanan, LMI conditions for robust stability analysis of stochastic Hopfield neural networks with interval time-varying delays and linear fractional uncertainties. Circuits Syst. Signal Process. 30, 1011–1028 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Y. Chen, H. Wang, A. Xue, R. Lu, Passivity analysis of stochastic time-delay neural networks. Nonlinear Dyn. 61, 71–82 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Chen, Z. Wang, W. Qian, F. Alsaadi, Finite-horizon \(H_\infty \) filtering for switched time-varying stochastic systems with random sensor nonlinearities and packet dropouts. Signal Process. 138, 138–145 (2017)

    Article  Google Scholar 

  4. Y. Chen, W. Zheng, Stochastic state estimation for neural networks with distributed delays and Markovian jump. Neural Netw. 25, 14–22 (2012)

    Article  MATH  Google Scholar 

  5. Y. Chen, W. Zheng, Stability analysis of time-delay neural networks subject to stochastic perturbations. IEEE Trans. Cybern. 43(6), 2122–2134 (2013)

    Article  Google Scholar 

  6. Y. Chen, H. Zou, R. Lu, A. Xue, Finite-time stability and dynamic output feedback stabilization of stochastic systems. Circuits Syst. Signal Process. 33, 53–69 (2014)

    Article  MathSciNet  Google Scholar 

  7. H. Choi, C. Ahn, P. Shi, M. Lim, M. Song, \(L_2-L_\infty \) filtering for Takagi–Sugeno fuzzy neural networks based on Wirtinger-type inequalities. Neurocomputing 153, 117–125 (2015)

    Article  Google Scholar 

  8. H. Dong, Z. Wang, S. Ding, H. Gao, Finite-horizon reliable control with randomly occurring uncertainties and nonlinearities subject to output quantization. Automatica 52, 355–362 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Erkmen, R.A. Vural, N. Kahraman, T. Yildirim, A mixed mode neural network circuitry for object recognition application. Circuits Syst. Signal Process. 32, 29–46 (2013)

    Article  MathSciNet  Google Scholar 

  10. J. Hu, Z. Wang, J. Liang, H. Dong, Event-triggered distributed state estimation with randomly occurring uncertainties and nonlinearities over sensor networks: a delay-fractioning approach. J. Frankl. Inst. 352, 3750–3763 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Q. Hu, J. Li, J. Zhang, Passivity control with practically finite-time convergence for large space structures. Acta Astronaut. 131, 152–158 (2017)

    Article  Google Scholar 

  12. M. Hua, H. Tan, J. Fei, State estimation for uncertain discrete-time stochastic neural networks with Markovian jump parameters and time-varying delays. Int. J. Mach. Learn. Cybern. 8, 823–835 (2017)

    Article  Google Scholar 

  13. S. Huo, M. Chen, H. Shen, Non-fragile mixed \(H_\infty \) and passive asynchronous state estimation for Markov jump neural networks with randomly occurring uncertainties and sensor nonlinearity. Neurocomputing 227, 46–53 (2017)

    Article  Google Scholar 

  14. H. Li, C. Wang, P. Shi, H. Gao, New passivity results for uncertain discrete-time stochastic neural networks with mixed time delays. Neurocomputing 73, 3291–3299 (2010)

    Article  Google Scholar 

  15. Q. Li, B. Shen, Y. Liu, T. Huang, Event-triggered \(H_\infty \) state estimation for discrete-time neural networks with mixed time delays and sensor saturations. Neural Comput. Appl. 28(12), 3815–3825 (2017)

    Article  Google Scholar 

  16. T. Li, X. Yao, L. Wu, J. Li, Improved delay-dependent stability results of recurrent neural networks. Appl. Math. Comput. 218, 9983–9991 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Y. Li, F. Deng, G. Li, L. Jiao, Robust, \(H_\infty \) filtering for uncertain discrete-time stochastic neural networks with Markovian jump and mixed time-delays. Int. J. Mach. Learn. Cybern. (2017). https://doi.org/10.1007/s13042-017-0651-2

  18. P. Liu, Z. Zeng, J. Wang, Complete stability of delayed recurrent neural networks with Gaussian activation functions. Neural Netw. 85, 21–32 (2017)

    Article  Google Scholar 

  19. X. Liu, X. Liu, M. Tang, F. Wang, Improved exponential stability criterion for neural networks with time-varying delay. Neurocomputing 234, 154–163 (2017)

    Article  Google Scholar 

  20. L. Ma, Z. Wang, Y. Bo, Z. Guo, A game theory approach to mixed \(H_2\)/\(H_\infty \) control for a class of stochastic time-varying systems with randomly occurring nonlinearities. Syst. Control Lett. 60, 1009–1015 (2011)

    Article  MATH  Google Scholar 

  21. K. Mathiyalagan, J. Park, R. Sakthivel, Novel results on robust finite-time passivity for discrete-time delayed neural networks. Neurocomputing 177, 585–593 (2016)

    Article  Google Scholar 

  22. B. Pearlmutter, Gradient calculations for dynamic recurrent neural networks: a survey. IEEE Trans. Neural Netw. 6(5), 1212–1228 (1995)

    Article  Google Scholar 

  23. J. Ren, X. Liu, H. Zhu, S. Zhong, K. Shi, State estimation of neural networks with two Markovian jumping parameters and multiple time delays. J. Frankl. Inst. 354, 812–833 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Sakthivel, T. Saravanakumar, B. Kaviarasan, Y. Lim, Finite-time dissipative based fault-tolerant control of Takagi–Sugeno fuzzy systems in a network environment. J. Frankl. Inst. 354, 3430–3455 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Senthilraj, R. Raja, Q. Zhu, R. Samidurai, Z. Yao, Delay-interval-dependent passivity analysis of stochastic neural networks with Markovian jumping parameters and time delay in the leakage term. Nonlinear Anal. Hybrid Syst. 22, 262–275 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Seuret, F. Gouaisbaut, E. Fridman, Stability of discrete-time systems with time-varying delays via a novel summation inequality. IEEE Trans. Autom. Control 60(10), 2740–2745 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Shen, H. Tan, Z. Wang, T. Huang, Quantized/saturated control for sampled-data systems under noisy sampling intervals: a confluent Vandermonde matrix approach. IEEE Trans. Autom. Control 62(9), 4753–4759 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Shen, Z. Wang, X. Liu, Bounded \(H_\infty \) synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon. IEEE Trans. Neural Netw. 22(1), 145–157 (2011)

    Article  Google Scholar 

  29. B. Shen, Z. Wang, H. Qiao, Event-triggered state estimation for discrete-time multidelayed neural networks with stochastic parameters and incomplete measurements. IEEE Trans. Neural Netw. Learn. Syst. 28(5), 1152–1163 (2017)

    Article  Google Scholar 

  30. B. Shen, Z. Wang, H. Tan, Guaranteed cost control for uncertain nonlinear systems with mixed time-delays: the discrete-time case. Eur. J. Control 40, 62–67 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Shen, J. Park, Z. Wu, Finite-time synchronization control for uncertain Markov jump neural networks with input constraints. Nolinear Dyn. 77, 1709–1720 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Shi, Y. Zhang, R. Agarwal, Stochastic finite-time state estimation for discrete time-delay neural networks with Markovian jumps. Neurocomputing 151, 168–174 (2015)

    Article  Google Scholar 

  33. J. Song, Y. Niu, Y. Zou, Finite-time sliding mode control synthesis under explicit output constraint. Automatica 65(3), 111–114 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Q. Song, H. Shu, Z. Zhao, Y. Liu, F. Alsaadi, Lagrange stability analysis for complex-valued neural networks with leakage delay and mixed time-varying delays. Neurocomputing 244(28), 33–41 (2017)

    Article  Google Scholar 

  35. A. van der Schaft, \(L_2\)-Gain and Passivity Techniques in Nonlinear Control, 3rd edn. (Springer, London, 2017)

  36. F. Wang, J. Liang, Constrained \(H_{\infty }\) estimation for time-varying networks with hybrid incomplete information. Int. J. Robust Nonlinear Control 28(2), 699–715 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. F. Wang, Z. Wang, J. Liang, X. Liu, Robust finite-horizon filtering for 2-D systems with randomly varying sensor delays. IEEE Trans. Syst. Man Cybern. Syst. (2017). https://doi.org/10.1109/TSMC.2017.2788503

  38. L. Wang, G. Wei, H. Shu, State estimation for complex networks with randomly occurring coupling delays. Neurocomputing 122(25), 513–520 (2013)

    Article  Google Scholar 

  39. Z. Wang, H. Liu, B. Shen, F. Alsaadi, A. Dobaie, \(H_\infty \) state estimation for discrete-time stochastic memristive BAM neural networks with mixed time-delays. Int. J. Mach. Learn. Cybern. (2018). https://doi.org/10.1007/s13042-017-0769-2

  40. Z. Wang, Y. Liu, G. Wei, X. Liu, A note on control of a class of discrete-time stochastic systems with distributed delays and nonlinear disturbances. Automatica 46, 543–548 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Z. Wang, Y. Wang, Y. Liu, Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays. IEEE Trans. Neural Netw. 21(1), 11–25 (2010)

    Article  Google Scholar 

  42. Y. Wu, H. Su, R. Lu, Z. Wu, Z. Shu, Passivity-based non-fragile control for Markovian jump systems with aperiodic sampling. Syst. Control Lett. 84, 35–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Z. Wu, P. Shi, H. Su, J. Chu, Passivity analysis for discrete-time stochastic Markovian jump neural networks with mixed time delays. IEEE Trans. Neural Netw. 22(10), 1566–1575 (2011)

    Article  Google Scholar 

  44. Z. Wu, P. Shi, H. Su, J. Chu, Reliable \(H_\infty \) control for discrete-time fuzzy systems with infinite-distributed delay. IEEE Trans. Fuzzy Syst. 20(1), 22–31 (2012)

    Article  Google Scholar 

  45. J. Xia, J. Yu, Y. Li, H. Zheng, New delay-interval-dependent exponential stability for stochastic neural networks with interval time-varying delay and distributed delay. Circuits Syst. Signal Process. 31, 1535–1557 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. S.-P. Xiao, H.-H. Lian, H.-B. Zeng, G. Chen, W.-H. Zheng, Analysis on robust passivity of uncertain neural networks with time-varying delays via free-matrix-based integral inequality. Int. J. Control Autom. Syst. 15(5), 2385–2394 (2017)

    Article  Google Scholar 

  47. Y. Xu, R. Lu, P. Shi, J. Tao, S. Xie, Robust estimation for neural networks with randomly occurring distributed delays and Markovian jump coupling. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 845–855 (2018)

    Article  MathSciNet  Google Scholar 

  48. F. Yang, L. Tian, S. Lin, An innovative finite-time passivity-based control strategy for power management of PV/hybrid storage power system, in Proceedings of 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), pp. 313–316 (2016)

  49. L. Yu, S. Fei, J. Huang, Y. Gao, Trajectory switching control of robotic manipulators based on RBF neural networks. Circuits Syst. Signal Process. 33, 1119–1133 (2014)

    Article  MathSciNet  Google Scholar 

  50. H. Zeng, Y. He, M. Wu, H. Xiao, Improved conditions for passivity of neural networks with a time-varying delay. IEEE Trans. Cybern. 44(6), 785–792 (2014)

    Article  Google Scholar 

  51. D. Zhang, L. Yu, Q. Wang, C. Ong, Estimator design for discrete-time switched neural networks with asynchronous switching and time-varying delay. IEEE Trans. Neural Netw. Learn. Syst. 23, 827–834 (2012)

    Article  Google Scholar 

  52. J. Zhang, X. Zhao, Y. Chen, Finite-time stability and stabilization of fractional order positive switched systems. Circuits Syst. Signal Process. 35, 2450–2470 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  53. X.-M. Zhang, Q.-L. Han, Global asymptotic stability for a class of generalized neural networks with interval time-varying delays. IEEE Trans. Neural Net. 22(8), 1180–1192 (2011)

    Article  Google Scholar 

  54. X.-M. Zhang, Q.-L. Han, Abel lemma-based finite-sum inequality and its application to stability analysis for linear discrete time-delay systems. Automatica 57, 199–202 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Y. Zhang, S. Xu, Z. Zeng, Novel robust stability criteria of discrete-time stochstic recurrent neural networks with time delay. Neurocomputing 72, 3343–3351 (2009)

    Article  Google Scholar 

  56. Q. Zhu, J. Cao, pth moment exponential synchronization for stochastic delayed Cohen–Grossberg neural networks with Markovian switching. Nolinear Dyn. 67, 829–845 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported partially by the Zhejiang Provincial Natural Science Foundation of China under Grant LR16F030003, and the National Natural Science Foundation of China under Grants 61473107, U1509205, 61333009 and 61427808.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yang, L. & Xue, A. Finite-Time Passivity of Stochastic Markov Jump Neural Networks with Random Distributed Delays and Sensor Nonlinearities. Circuits Syst Signal Process 38, 2422–2444 (2019). https://doi.org/10.1007/s00034-018-0978-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0978-2

Keywords

Navigation