Skip to main content
Log in

Focusing Multireceiver SAS Data Based on the Fourth-Order Legendre Expansion

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Using Legendre polynomials and the derivation method of the implicit function, this paper proposes a range-Doppler algorithm for multireceiver synthetic aperture sonar. Based on Legendre polynomials, the two-way slant range is first expanded into a power series with respect to the slow time. Then, the derivation method of the implicit function is exploited to deduce the point of stationary phase and point target reference spectrum (PTRS). Based on this PTRS, the paper presents an imaging algorithm, which uses the range-dependent sub-block processing method to cancel the space-variant coupling between the range and azimuth dimensions. Simulation results and real data processing are presented to validate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, New York, 1972)

    MATH  Google Scholar 

  2. J. Akhtar, Removal of range ambiguities with orthogonal block coding techniques. Circuits Syst. Signal Process. 29(2), 311–330 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. M.R. Azimi-Sadjadi, M. Klausner, J. Kopacz, Detection of underwater targets using a subspace-based method with learning. IEEE J. Ocean. Eng. 42(4), 869–879 (2017)

    Article  Google Scholar 

  4. A.B. Bellettini, M.A. Pinto, Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase-center antenna. IEEE J. Ocean. Eng. 27(4), 780–789 (2002)

    Article  Google Scholar 

  5. D. Bi, Y. Xie, Y.R. Zheng, Synthetic aperture radar imaging using basis selection compressed sensing. Circuits Syst. Signal Process. 34(8), 2561–2576 (2015)

    Article  Google Scholar 

  6. W.W. Bonifant, M.A. Richards, J.H. McClellan, Interferometric height estimation of the seafloor via synthetic aperture sonar in the presence of motion errors. IEE Proc. Radar Sonar Navig. 147(6), 322–330 (2000)

    Article  Google Scholar 

  7. S. Chen, H. Wang, F. Xu, Y. Jin, Target classification using the deep convolutional networks for SAR images. IEEE Trans. Geosci. Remote Sens. 54(8), 4806–4817 (2016)

    Article  Google Scholar 

  8. I.G. Cumming, F.H. Wong, Digital Processing of Synthetic Aperture Radar: Algorithms and Implementation (Artech House, Norwood, 2005)

    Google Scholar 

  9. A. Gaibel, A. Boag, Back-projection SAR imaging using FFT, in European Radar Conference (London, UK, 2016), pp. 69–72

  10. P.T. Gough, M.P. Hayes, D.R. Wilkinson, An efficient image reconstruction algorithm for a multiple hydrophone array synthetic aperture sonar, in European Conference on Underwater Acoustics (Lyon, France, 2000), pp. 395–400

  11. P.E. Hagen, R.E. Hansen, Area coverage rate of synthetic aperture sonars, in MTS/IEEE Oceans Conference (Aberdeen, UK, 2007), pp. 1–5

  12. A.J. Hunter, S. Dugelay, W.L.J. Fox, Repeat-pass synthetic aperture sonar micronavigation using redundant phase center arrays. IEEE J. Ocean. Eng. 41(4), 820–830 (2016)

    Article  Google Scholar 

  13. P. Imperatore, A. Pepe, R. Lanari, Spaceborne synthetic aperture radar data focusing on multicore-based architectures. IEEE Trans. Geosci. Remote Sens. 54(8), 4712–4731 (2016)

    Article  Google Scholar 

  14. X. K. Jiang, C. Sun, J. Feng, A novel image reconstruction algorithm for synthetic aperture sonar with single transmitter and multiple receiver configuration, in MTS/IEEE Oceans Conference (Kobe, Japan, 2004), pp. 1940–1944

  15. K.A. Johnson, M.P. Hayes, P.T. Gough, A method for estimating the sub-wavelength sway of a sonar towfish. IEEE J. Ocean. Eng. 20(4), 258–267 (1995)

    Article  Google Scholar 

  16. G. Krieger, N. Gebert, A. Moreira, Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling. IEEE Geosci. Remote Sens. Lett. 1(4), 260–264 (2004)

    Article  Google Scholar 

  17. J. Mckay, V. Monga, R.G. Raj, Robust sonar ATR through Bayesian pose-corrected sparse classification. IEEE Trans. Geosci. Remote Sens. 55(10), 5563–5576 (2017)

    Article  Google Scholar 

  18. T.G. Michael, B. Marchand, J.D. Tucker, T.M. Marston, D.D. Sternlicht, M.R. Azimi-Sadjadi, Williams, Image-based automated change detection for synthetic aperture sonar by multistage coregistration and canonical correlation analysis. IEEE J. Ocean. Eng. 41(3), 592–612 (2016)

    Google Scholar 

  19. Y.L. Neo, F. Wong, I.G. Cumming, Processing of azimuth-invariant bistatic SAR data using the range Doppler algorithm. IEEE Trans. Geosci. Remote Sens. 46(1), 14–21 (2008)

    Article  Google Scholar 

  20. Y. Pailhas, Y. Petillot, K. Brown, B. Mulgrew, Spatially distributed MIMO sonar systems: principles and capabilities. IEEE J. Ocean. Eng. 42(3), 738–751 (2017)

    Article  Google Scholar 

  21. A. Papoulis, Generalized sampling expansion. IEEE Trans. Circuits Syst. CAS-24(11), 652–654 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. K.D. Rolt, H. Schmidt, Azimuthal ambiguities in synthetic aperture sonar and synthetic aperture radar imagery. IEEE J. Ocean. Eng. 17(1), 73–79 (1992)

    Article  Google Scholar 

  23. S.A.V. Synnes, A.J. Hunter, R.E. Hansen, T.O. Sæbø, H.J. Callow, R.V. Vossen, A. Austeng, Wideband synthetic aperture sonar backprojection with maximization of wave number domain support. IEEE J. Ocean. Eng. 42(4), 880–891 (2017)

    Article  Google Scholar 

  24. F. Wang, X. Li, A new method of deriving spectrum for bistatic SAR processing. IEEE Geosci. Remote Sens. Lett. 7(3), 483–486 (2010)

    Article  Google Scholar 

  25. V.T. Wang, M.P. Hayes, Synthetic aperture sonar track registration using SIFT image correspondences. IEEE J. Ocean. Eng. 42(4), 901–903 (2017)

    Article  Google Scholar 

  26. W. Wang, R. Wang, Y. Deng, W. Xu, L. Hou, Improved digital beam-forming approach with scaling function for range multi-channel synthetic aperture radar system. IET Radar Sonar Navig. 10(2), 379–385 (2016)

    Article  Google Scholar 

  27. T. Xiong, M.D. Xing, Y. Wang, R. Guo, J.L. Sheng, Z. Bao, Using derivatives of an implicit function to obtain the stationary phase of the two- dimensional spectrum for bistatic SAR imaging. IEEE Geosci. Remote Sens. Lett. 8(6), 1165–1169 (2011)

    Article  Google Scholar 

  28. H. Yang, J. Tang, Q. Li, X. Liu, Processing of non-uniform azimuth sampling in multiple-receiver synthetic aperture sonar image, in MTS/IEEE Oceans Conference (Aberdeen, UK, 2007), pp. 1–4

  29. H. Zhang, Y. Deng, R. Wang, N. Li, S. Zhao, F. Hong, L. Wu, O. Loffeld, Spaceborne/stationary bistatic SAR imaging with TerraSAR-X as an illuminator in staring-spotlight mode. IEEE Trans. Geosci. Remote Sens. 54(9), 5203–5216 (2016)

    Article  Google Scholar 

  30. X. Zhang, X. Chen, W. Qu, Influence of the stop-and-hop assumption on synthetic aperture sonar imagery, in IEEE International Conference on Communication Technology (Chengdu, China, 2017), pp. 1601–1607

  31. X. Zhang, J. Tang, F. Wang, S. Bai, D. Liu, Accurate back projection imaging algorithm for multireceiver SAS in engineering application. J. Nav. Univ. Eng. 26(2), 20–24 (2014)

    Google Scholar 

  32. X. Zhang, J. Tang, H. Zhong, Multireceiver correction for the chirp scaling algorithm in synthetic aperture sonar. IEEE J. Ocean. Eng. 39(3), 472–481 (2014)

    Article  Google Scholar 

  33. H. Zhu, C. Li, L. Zhang, J. Shen, River channel extraction from SAR images by combing gray and morphological features. Circuits Syst. Signal Process. 34(7), 2271–2286 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported financially by the National Natural Science Foundation of China (61601473) and the National Key Laboratory Foundation of China (9140C290401150C29132). The authors thank LetPub (www.LetPub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yang, P. & Dai, X. Focusing Multireceiver SAS Data Based on the Fourth-Order Legendre Expansion. Circuits Syst Signal Process 38, 2607–2629 (2019). https://doi.org/10.1007/s00034-018-0982-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0982-6

Keywords

Navigation